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ABSTRACT 

Creating simplicity out of complexity, this research abandons the traditional 

guidance and control architecture for aerospace vehicles and embraces a revolutionary 

concept based on the principles of nonlinear optimal control theory.  Motivated by the 

emerging needs of the next generation of reusable space vehicles, an autonomous 

“integrated” guidance and control system is developed that provides a safe approach to 

the highly constrained and nonlinear reentry problem.  A pseudospectral-based optimal 

guidance scheme is used to generate high-fidelity, vehicle-tailored solutions to reentry 

trajectory optimization and guidance problems.  To provide an autonomous, onboard 

capability of satisfying final-approach requirements, a new method is developed that 

includes an automatic generation of landing constraints given any runway geometry.  

This unique and simple approach avoids significant complexities arising from previous 

ideas of trajectory segmentation, trimmed flight, and trajectory tracking schemes.  When 

demonstrating the new ideas, it is shown that the proposed approach can easily 

compensate for large uncertainties and disturbances consisting of hurricane-force wind 

gusts.  An investigation of these new principles for the complete, nonlinear six degree-of-

freedom system dynamics indicates that while the results are quite promising, a 

substantial amount of new theoretical and computational problems remain open, 

particularly in the area of over-actuated dynamical systems. 
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I. INTRODUCTION 

A. OVERVIEW 
With ongoing efforts to improve the safety, reliability, and cost of reusable launch 

vehicle (RLV) systems and their operations along with the more recent focus on a U.S. 

Space Shuttle replacement following its retirement around 2012, there is a new 

opportunity to implement advanced, yet simpler and more effective guidance and control 

(G&C) methods than used in previous reentry technologies.  A key objective that is 

sought in this endeavor as well as almost all other sectors of technology is the 

requirement for more intelligent systems that can operate autonomously with less human 

interaction.  Of course this requirement has the underlying stipulation that they operate 

safely, more reliably, and more efficiently than ever before.  To accomplish this objective 

for the case of an RLV, the G&C during ascent, reentry, or landing must operate 

autonomously and in real-time.  The RLV intelligent control must be capable of adapting 

to rapidly changing circumstances; handling large external disturbances and large 

parameter uncertainties; re-generating trajectories (i.e., replanning to the original or 

alternative landing site); and reconfiguring its control effectors in the event of an 

unforeseen control failure.  In practice, these challenges are met by extensive pre-flight 

planning involving abort planning for a large but finite number of off nominal conditions 

such as engine failure, control effector failures, or variations in atmospheric conditions.  

The preflight planning therefore consumes a substantial amount of manpower and is 

susceptible to delays in launch schedules.    

This chapter begins with background of the RLV reentry problem to include a 

historical overview of reentry vehicles and associated aerospace challenges; an overview 

of various methods developed to address the reentry problem; the motivation for this 

particular research work; highlights of specific contributions that this work delivers to the 

aerospace field; and then concludes with an overview of the proceeding chapters. 
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B. BACKGROUND 

1. The RLV Reentry Problem  

a. Historical Context of Reentry Vehicles 
Guiding and controlling objects entering the earth’s atmosphere [1],[2] 

became a major concern with the advent of Inter-Continental Ballistic Missile (ICBM) 

development beginning in 1950 by the major world powers.  At the time, rapid response 

was a key strategic deterrent for an enemy threat such that by 1965 the United States and 

the Soviet Union could strike almost any part of the world with a thermo-nuclear warhead 

in less than 40 minutes [3].  Making a warhead from a ballistic missile hit a target on the 

other side of the world was no easy feat.  To this day, doing so accurately is still a 

challenging problem.  With shifting military strategy over the years came the preference 

for conventional weapons and as such, more emphasis on precision targeting.  To 

improve accuracy, the capability to maneuver a reentry body became a critical 

requirement; hence, the birth of the guided reentry vehicle (RV). 

The U.S. Air Force (the Army Air Corps until the official split in 1947) 

officially started its ICBM program in the early 1950s shortly after U.S. rocket 

propulsion made its debut with the successful launch of the Army Redstone Ballistic 

Missile in 1953 [4].  The success of this program was largely due to the technical 

leadership of Wernher von Braun and the “repackaged” technology of the German V-2 

rocket [5].  At the same time, the Cold War crisis and the Soviet’s victory of putting the 

first human in space fueled President John F. Kennedy’s public decision in 1961 to 

support NASA’s human spaceflight initiatives with the goal of sending a man to the 

moon via Project Apollo [6].  With this goal came the need to develop more advanced 

and effective technologies for reentry such that a vehicle carrying humans could safely 

return to earth.  Breaking from the mold of the military’s weaponized ballistic RV, 

NASA became the driving force behind most research and development (R&D) efforts in 

reentry technology with the Apollo reentry capsule.  As the space race continued through 

the 1960s, rising costs associated with design, manufacturing, and operations of the 

Saturn V and other expendable launch vehicles started to have an economic impact on the 

government’s budget.  Therefore, the Space Shuttle program, starting shortly after 

President Nixon proposed the development of a reusable space transportation system 
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(STS) in 1972, officially kicked off with NASA’s selection of Rockwell’s STS division 

based out of Downey, CA to lead the design, development, and test and evaluation of the 

orbiter [7].  Although a magnificent engineering feat leading the way in reusable space 

access, the Space Shuttle turned out to be the most complex and expensive launch vehicle 

in the U.S. inventory [5]. 

Starting in 1994 under President Clinton's National Transportation Space 

Policy, NASA's Advanced Space Transportation Program (ASTP) [8] led a strong 

campaign to replace the aging and costly Space Shuttle.  Numerous vehicle concepts 

were proposed that promised commercially viable space access by minimizing costs, and 

maximizing efficiency, effectiveness, and utility.   

The concept of a fully reusable launch vehicle was one of the most 

controversial choices for future space transportation systems because of the many on-

going challenges that faced industry.  The most difficult challenges included: 1.) the 

process of integrating complex, state-of-the-art systems into a robust and cost efficient 

vehicle and 2.) financing breakthrough technological discoveries that would significantly 

minimize operational costs.  Without adequate financial support from either Congress or 

private investors, materializing a fully reusable concept was out of reach.  Although the 

Ansari X-Prize [9] showed some promise for a privatized space industry, investors are 

still wary of high risks associated with long-term investments in RLV development.   

Today, the onset of a new race to the moon and back spawned NASA’s 

initiative to develop a Crew Exploration Vehicle (CEV) [10] which has surprisingly 

reverted back to the pre-shuttle concept of the Apollo return module.  Revitalizing space-

plane concepts for a shuttle alternative, the CEV must satisfy requirements to serve as a 

manned, earth-orbit, moon, and mars return vehicle [11].   

b. The Reentry Problem 

The basic premise of the reentry problem is to autonomously and safely 

fly a vehicle from point A, the initial condition, to point B, the final condition, as 

depicted in Figure 1.1.  This involves determining a flight path to take (i.e., trajectory 

optimization/generation), guidance system synthesis to follow the desired trajectory in  
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the presence of disturbances and errors in the models used in the trajectory generation 

calculations, and maintenance of an attitude profile needed to follow that path (i.e., 

control).         

A

B

 
Figure 1.1 Reentry Problem: Autonomous Trajectory from Point A to Point B. 

 

For an RLV that has entered space and needs to re-enter the earth’s 

atmosphere, point A may be defined by conditions associated with a low-earth orbit.  For 

example, the RLV may be de-orbiting from an altitude of approximately 170 km 

traveling at a speed of 27,870 km/h (7.74 km/s) in excess of Mach 25, roughly 8,149 km 

from its intended landing site, and will traverse approximately 20% the circumference of 

the earth from the deorbit point to landing.  Since “reentry” implies entry into the earth’s 

atmosphere, a more suitable initial condition for point A is the entry interface, defined by 

the vehicle’s penetration into the sensible atmosphere.  Since most of the atmosphere is 

below 100 km (62 mi), this “Karman Line” is the internationally accepted “demarcation” 

between the atmosphere and space [12], [13].  For testing feasibility of new G&C 

methods, it is even conceivable to start at sub-orbital altitudes.  Although guiding a 

vehicle from point A to point B sounds like nothing more than a typical path planning 



5 

and tracking problem, it must do so while keeping acceleration and heating loads within 

design limits.  This is especially challenging due to its dynamic environment.  

c. Specific Difficulties of Reentry G&C 

In addition to the complex dynamics involved with the equations of 

motion for hypersonic maneuvering vehicles, there are various facets of reentry that make 

it a very challenging aerospace problem.  Among these are path constraints due to 

environmental effects, state and control constraints based on vehicle limitations, and time 

constraints due to the nature of high-speed flight and online computational time 

requirements. 

The primary cause of difficulties originates from the dynamic environment 

encountered when an RLV descends from space, through the entire atmosphere, and 

traverses large portions of the earth’s surface.  The vehicle encounters a large range of 

environmental conditions as it descends through the atmosphere, to include changes in 

pressure, temperature, density, and ionization.  It also encounters gravity field variations, 

weather conditions (e.g.,. wind, precipitation, etc.), moving targets (the earth is spinning), 

etc.  Among these aspects, the specific difficulties that pose the greatest challenge from a 

G&C perspective are related to vehicle limitations and uncertainties when maneuvering 

in such harsh and unpredictable environments.  The high speeds associated with reentry 

can create high heat loads, g-loads, and pressure loads that ultimately must be tolerated 

by the vehicle’s thermal protection system (TPS) and structure.  Since RLVs in general 

are extremely limited in size, strength, and mass as a result of propulsion requirements 

for space access, the trajectory must be designed to minimize these loads, or at least not 

exceed operational limits.  Originally, due to technology levels at the time of Shuttle 

design, the goal was to design a trajectory that minimized the loads so as to allow 

minimum weight for structure and TPS, thereby allowing more volume/weight for 

propulsion.  For example, the Shuttle had a pre-defined angle-of-attack profile that 

required about 38 degrees during high heating rate and then down to 28 degrees to 

enhance crossrange performance [14].  Also related to limitations on weight, RLVs 

typically have a low lift-to-drag ratio (L/D) that reduces vehicle range and 

maneuverability.  In terms of uncertainties, there are also numerous complicated flow-

field interactions that affect the vehicle’s aerodynamic characteristics.  For example, 
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rarified gas dynamics and ionization encountered in the upper atmosphere when traveling 

at high speeds is very difficult to predict, estimate, or measure.  If developed correctly, 

the trajectory generator can accommodate these limitations by imposing path constraints 

and state constraints and simultaneously exploiting the physics of the problem by not 

imposing unnecessary constraints as discussed in Chapters II and III.   

In addition to these flight path limitations and more consistent with typical 

aircraft, there are also electro-mechanical limitations inherent in the vehicle design.  For 

example, the actuators have limited rates; the control surfaces have limited deflection 

ranges, etc.  These types of limitations can be captured by imposing control constraints. 

The final aspect that contributes to the challenge of the reentry problem is 

the concept of time.  The only concern regarding flight time is the duration of time the 

vehicle spends in the atmosphere.  Since the time-of-flight cannot be regulated by 

“thrusting” in the atmosphere for RLV reentry, time is dependent on the lift and drag 

characteristics of the vehicle.  Too much time in the atmosphere at high-speeds can cause 

excessive heat loads beyond the vehicle’s design limits.  In this case, it is advantageous to 

bleed off speed as fast as possible and one way to do this is to increase drag.  Increasing 

drag reduces L/D which ultimately reduces downrange distance; therefore, it is obvious 

that drag must be controlled to balance this tradeoff.  Note that it is this regulation of drag 

that has formed the foundation of reentry G&C methods as discussed in the next section.  

Other flight time requirements may be from a strategic standpoint like turn-around-time.  

Other than sustained heat load time and strategic considerations, there are typically no 

requirements in terms of how long it takes an RLV to land; however, there is a 

requirement on computational time in the flight computer.   

For a hypersonic vehicle traveling is excess of five times the speed of 

sound (Mach > 5), there is very little time for on-board computations.  In terms of 

classical feedback control, this requires relatively high sampling rates.  A demonstration 

of a new notion of feedback that doesn’t require high sampling rates is part of the 

contribution of this dissertation and will be discussed later.  A point of interest is that in 

the early 1960’s, Wingrove determined from a survey of G&C methods that the guidance 

computational time required to maintain system stability must be on the order of two to 
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tens of seconds [15].  In comparison, today’s RLV systems, like the X-37 and X-40, 

require guidance loops to operate on the order of 10 Hz and control loops around 50 Hz.  

Potentially, time can affect the system’s ability to calculate new guidance commands if 

new trajectories are desired; ability to accurately sense and/or estimate the vehicle’s exact 

position (i.e., navigation); and ability to control the system.  Overall, computational time 

constraints can affect the entire guidance, navigation, and control (GNC) system.  

Effectively and efficiently overcoming these various difficulties of the reentry problem 

has led to a large body of G&C R&D efforts.   

2. G&C Methods for RLV Reentry 

a. Traditional Approach: Based on Space Shuttle G&C 

The ultimate goal of all G&C methods is to regulate aerodynamic forces 

and moments such that the constraints are not violated and that the vehicle safely reaches 

its final destination.  Since numerous reentry G&C methods are modeled after the highly 

successful U.S. Space Shuttle entry guidance logic, it is first necessary to summarize the 

approach beginning with an overview of the various entry phases.  This overview is 

primarily adapted from the NASA Shuttle reference manual [16].    

(1) Shuttle Entry Phases.  The Shuttle’s normal trajectory 

guidance is separated into three primary phases: 1.) Entry, 2.) Terminal Area Energy 

Management (TAEM), and 3.) Approach and Landing (A/L).  An altitude profile for 

these phases is illustrated in Figure 1.2.  
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Figure 1.2 Space Shuttle Entry Flight Profile [16]. 

 

Beginning with its de-orbit at an altitude (h) of 557,000ft , velocity (V) of 

25,400ft/s and downrange distance (DR) from its intended landing site of 4400nm , the 

Shuttle Orbiter enters the Earth’s atmosphere at the defined entry interface 

( 400,000 ft)h ≈  with a high angle-of-attack (~40 deg) to shield its body from the high 

heat loads.  It continues its high-alpha descent through communications blackout, from 

approximately 265,000 ft  to 162,000 ft , until reaching the TAEM 

interface ( 85,000ft, 2,500ft/s, 52nm)h V DR≈ ≈ ≈ , where typical S-turn maneuvers (i.e., 

bank reversals) are performed to manage energy.  The purpose of TAEM is to maneuver 

the Shuttle such that the proper conditions are achieved for runway alignment and to 

proceed with the A/L phase.  By a series of bank commands, the Shuttle is able to adjust 

its drag acceleration while ensuring that structural and thermal limits are not exceeded.  

After the S-turns, the Shuttle follows a reference altitude profile and a series of waypoints 

to the Heading Alignment Cylinder/Cone (HAC) that serves to properly align the 

Shuttle’s heading with the runway as shown in Figure 1.3. 
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Figure 1.3 Space Shuttle Reference Altitude Tracking and Waypoint  

Guidance [16]. 
 

Depending on the approach to the runway (“straight-in” or “overhead”) as shown in 

Figure 1.4, the Shuttle may use one of two HACs for alignment.   

 

HAC

Overhead Approach
Straight-in Approach

HAC

HAC

Overhead Approach
Straight-in Approach

HAC

 
Figure 1.4 Typical Straight-in and Overhead HAC-Approaches for Shuttle. 

 

The A/L interface ( 10,000ft, 290ft/s, 5nm, 1,000ft)h V DR CR≈ ≈ ≈ ≈  

initiates the final approach sequence to landing.  Except for the higher initial glide slope 

(-19 to -17 deg) at a higher airspeed and sink rate (~ 10,000 ft/min), the A/L phase 

consists of the characteristic final approach (i.e., shallow glide slope of ~ 1.5 deg), flare, 

touchdown, and rollout of a typical high performance aircraft.  This “canned” A/L phase, 

shown in Figure 1.5, facilitates the use of an “autoland” sequence that initiates shortly 



10 

before the TAEM-A/L switching point by the activation of “trajectory capture.”  Again, 

more details for each of these phases and their corresponding guidance segments can be 

found in Ref. [16].   
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Figure 1.5 Approach and Landing Profile for “Autoland” System. 

 

The relatively fixed geometry of the final approach segment facilitates the 

use of autoland guidance schemes.  With a known geometric profile to a specific runway 

approach, the guidance scheme only needs to track the profile and achieve the desired 

touchdown conditions.  For the Shuttle, the guidance system employs an “Autoland 

Shaping Processor” that predicts touchdown conditions to complete the desired tracking 

profile [17].  The guidance computer issues commands based on pre-determined 

waypoints such as altitude callouts in conjunction with sensor feedback from its inertial 

measurement unit (IMU) and the various navigation aids (air data system, tactical air 

navigation –TACAN, microwave scan beam landing system –MSBLS, and radar 

altimeter).  Upon reaching 100 ft shortly after crossing the runway threshold to 

touchdown, on-board navigation uses radar altimeter measurements for guidance.   
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Stemming from earlier Shuttle autoland guidance [17]-[19], more recent 

efforts have made improvements in these schemes.  For example, Barton and Tragesser 

developed the Autoland I-Load Program (ALIP) for the X-34 [20].  ALIP demonstrated 

that using initial and final dynamic pressure in a two-point boundary value problem 

reduced complexity and improved robustness that lends itself well as an onboard 

trajectory generation capability.  Additionally, to handle off-nominal landing conditions 

such as large wind shear turbulence, Ha and Kim proposed an adaptive gain-scheduled 

proportional-integral-derivative (PID) control that is optimized using genetic algorithms 

[21].  Their fully automatic landing guidance algorithm which incorporates six-degree-of-

freedom (6-DOF) dynamics can successfully land a simulated aircraft in bad weather 

conditions.  Looye describes a series of controller functions that are defined based on 

stability, speed/flight path tracking, glide-slope guidance, and flare such that specified 

parameters can be determined via a multi-objective optimization problem [22].  Like the 

Shuttle A/L guidance scheme, Kluever has developed a trajectory-planning algorithm that 

computes reference flight profiles based on a series of geometric segments [23].  The 

Japanese (NASDA and NAL) went so far as to successfully demonstrate via Monte Carlo 

simulations and flight testing, an automatic landing algorithm in their Automatic Landing 

Flight Experiment (ALFLEX) that’s incorporated into their HOPE-X RLV guidance 

system [24], [25] .  Autoland routines are so common now that their methods, such as the 

use of a “glide-slope coupler” for guiding a vehicle on a predetermined flight path to 

landing [26], are found in elementary G&C textbooks.  For this reason, the work 

presented in this dissertation does not address the landing phase, but rather prescribes a 

design and method that ensures final approach conditions are satisfied.     

(2) Space Shuttle Drag-Based Guidance Logic.  In taking less 

computer power than a modern digital wristwatch, the Shuttle entry guidance is a 

marvelous technical achievement wherein a drag-based tracking technique is used for 

guidance.  The Shuttle’s guidance logic, as described in one of the earliest public works 

by Harpold and Graves [14], is divided into five independent drag reference segments: 

two quadratic segments, a pseudo-equilibrium glide segment, a constant drag segment, 

and a linear segment.  Each guidance segment is designed for a specific flight phase and 

then later linked together for the entire mission.  For example, the two quadratic segments 
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are used for the region of aerodynamic heating that occurs at high speeds, the 

“temperature control phase” [14].  So, for each segment, a closed-form analytical 

expression is designed off-line for the desired drag acceleration profile that best satisfies 

the entry corridor and heating requirements.  Then attitude commands (bank angle 

modulation) are generated to track the given profiles.  The only flexibility in this 

guidance system comes from the capability to change the shape of each segment by 

changing the coefficients of the individual drag acceleration equations.          

(3) Modified Drag-Acceleration Methods.  Due to the 

relatively simplistic and successful drag-acceleration method used in Shuttle guidance, 

numerous efforts have pursued a similar approach.  For example, Roenneke implemented 

a drag-verses-energy scheme whereby a linear feedback control law tracks a drag 

reference profile [27].  Likewise, Lu determined an optimal drag acceleration profile by 

parameterizing a reference trajectory and optimizing it as a piecewise linear function of 

energy [28],[29].  This piecewise approach forms simple analytical expressions that are 

tracked by a nonlinear controller.  Follow-on efforts improved this work by developing a 

Receding Horizon Control (RHC) method, intended to have a simple implementation, 

that regulates a nonlinear system about a time-varying reference trajectory using closed-

form approximations, again based on linearized time-varying (LTV) dynamics [30].  

Later, Shen made this method faster by re-formulating the problem into two sequential, 

one-parameter search problems [31].   

(4) Predictor-Corrector, Planner-Follower.  Various efforts 

have pursued so called planner-follower architectures that combine predictor-corrector, 

originally proposed by Wingrove for abort control [15] with traditional tracking control 

(i.e., profile following).  The idea is to use a trajectory generation scheme to plan a 

trajectory control sequence.  This reference trajectory is then tracked by the follower.  

The predominant attitude control methods used for profile following consist of feedback 

linearization and dynamic inversion (DI) [32]-[34].  For example, Johnson and Calise 

have used feedback linearization with a neural network as a model reference adaptive 

controller for a trajectory following architecture called Pseudo-Control Hedging 

[35],[36].  Mease used feedback linearization of differential geometric control that 

allowed more global linearization of drag dynamics [37].  The main problem with these 
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approaches is their requirement for exact system knowledge (i.e., plant parameters).  For 

example, dynamic inversion forms an augmented linear system by canceling nonlinear 

terms such that linear control techniques are applicable.  With an imperfect model, 

substantial errors can result.  For air vehicles where large uncertainties in aerodynamic 

forces and moments are inevitable, this method could potentially result in unstable, 

unrecoverable flight conditions.  For this reason, other nonlinear feedback methods are 

being investigated.  Some methods include various combinations of adaptive control, 

backstepping, and even more robust versions of dynamic inversion.   

The culmination of the Advanced Guidance and Control (AG&C) 

program under direction of the NASA X-33 Project Office, Marshall Space Flight Center 

(MSFC), led to the comparison of various drag-based methods for the X-33.  The 

methods consisted of baseline guidance (shuttle derived), Linear Quadratic Regulator 

(LQR), Predictor-Corrector (PC), Quasi-Equilibrium Glide (QEG) with PC, and an 

energy-drag technique called Evolved Acceleration Guidance Logic for Entry (EAGLE) 

[38].  Of these methods, EAGLE and QEG performed the best in NASA’s high-fidelity 

Marshall Aerospace Vehicle Representation in C (MAVERIC) simulation environment. 

b. Integrated Adaptive Guidance and Control Methods 

With the realization of advances in computational power and numerical 

algorithms, recent research efforts for solving the reentry problem have focused on real-

time, on-line trajectory generation, control reconfiguration, and guidance adaptation.  For 

example, reconfigurable control based on an optimal control allocation algorithm has 

been performed at the Air Force Research Laboratory (AFRL) for vehicles such as the X-

40, X-37, and X-33 [39]-[42].  Reconfiguration capabilities for RLV systems have also 

been rigorously pursued by such efforts as the AG&C Program and AFRL’s Integrated 

Adaptive Guidance and Control (IAG&C) Program.  More on these programs can be 

found in Refs. [38] and [42].  Schierman et al. went as far as combing a reconfigurable 

inner-loop with an adaptive outer-loop based on an online trajectory retargeting algorithm 

that makes use of polynomial neural networks (PNN) to store pre-computed trajectories 

that were solved via sequential quadratic programming (SQP).  The online 

implementation was called Optimal-Path-to-Go (OPTG) guidance [43].  Other schemes 
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for handling locked control surfaces involve a combination of traditional proportional-

integral (PI) and quadratic programming-based control allocation [44],[45].   

The drawback to using such methods again returns to the need of adjusting 

controller gains, enforcing trim, and tracking reference trajectories.  In some cases 

involving failure scenarios, reconfigurable control and guidance adaptation may not be 

sufficient to recover full control; hence, trajectory reshaping is necessary to augment the 

guidance commands.  It may also be required to abort the pre-planned mission altogether 

and retarget an alternate landing site.  Work by Shaffer [47],[46] has integrated trajectory 

reshaping and retargeting with the reconfigurable control work of Oppenheimer and 

Doman [40] to demonstrate relatively fast computations of optimal trajectories under 

state-dependent control constraints resulting from control power limitations following 

control effector failures.  Likewise, other approaches have begun to address the need for 

onboard trajectory reshaping [48]-[51].   

Despite efforts at developing full on-line approaches, the concern for 

convergence and speed has motivated the use of off-line reference trajectories for 

tracking applications.  Since the early days of space shuttle entry guidance, designers 

have been employing various reference trajectory tracking schemes as summarized in 

Sec. 2.a.(2)-(3).  More recent efforts have employed optimal trajectory generation to 

solve for a reference input trajectory, then use other inner-loop control means to track the 

desired trajectory [52]-[54].  

Another common approach for reentry trajectory tracking is the use of 

simple adaptive control theory for the design of model reference adaptive control 

(MRAC) techniques [55].  Although the popularity of adaptive control methods has risen 

significantly in the past five years, there are still various problems with their use.  Wise 

provided a recent survey of adaptive control applications for flight vehicles that identified 

numerous open problems [56], summarized here for completeness: 

1. Most MRAC schemes still need to schedule reference models or 

gain schedules for different flight phases since large changes in 

the flight envelope creates scheduling problems that can cause 

undesired dynamics; 
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2. Due to transient performance of adaptive systems, several 

parameter/matrices require tuning; 

3. Trial-and-error methods associated with designing the adaptive 

system opens up potential problems with adaptation rates; 

4. Various issues with sizing dead zones – for example, using fast 

learning rates addresses one problem while causing other 

problems with high frequency oscillations; 

5. Filters used for structural mode suppression often reduces stability 

margins excessively; 

6. Amount of gain and phase margins questioned as a result of 

robustness issues associated with feedback time delays. 

In addition to adaptive methods, optimization methods, traditionally aimed 

at minimizing heat loads, has also become quite popular. 

c. Trajectory Optimization Methods 
Optimization techniques, such as dynamic programming, were used as 

early as 1961 to select nominal reference trajectories prior to reentry [15].  Bryson, 

providing perhaps the most influential bodies of work in flight trajectory optimization, 

implemented a steepest descent algorithm to design optimal lift/drag profiles that 

minimized heat with acceleration constraints [57].  Speyer combined perturbation theory 

with optimization to develop neighboring optimal solutions for the selection of nominal 

reference trajectories [58].  Hull and Speyer later implemented an augmented-Lagrangian 

method, a form of nonlinear programming (NLP), to compute maximum downrange and 

crossrange trajectories [59].  In addition to manually varying parameters to achieve a 

good guess in the form of a nominal trajectory, this method required the use of penalty 

functions to improve convergence properties and prevent weighting terms from shooting 

to infinity.  These types of issues were highlighted by Pesch in a series of papers that 

culminated in an overview of off-line and on-line trajectory optimization for aerospace 

applications [60].  Stengel extended work involving energy-state approximations [61]  by 

replacing velocity with kinetic energy and time with total energy to transform the reentry 

problem to one of fixed final energy and then solved using dynamic programming [62].  
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Energy-state approximations (ESA) neglect all state variables except energy so that only 

a single function needs to be minimized.  This technique is embedded in NASA Ames 

Research Center’s Hypersonic Aircraft Vehicle Optimization Code (HAVOC) that has 

been used to provide near-optimal trajectories [61],[63].  

The most widely used trajectory optimization methods used today fall 

under the purview of either an indirect method or a direct method (see ChapterII., Sec. 

B.2).  As thoroughly documented by Betts [64], each of these methods has their strengths 

and weaknesses.  Perhaps the most common indirect method is the so called “shooting” 

technique.  Simple and multiple shooting methods are based on transforming a two-point 

boundary value problem (TPBVP) into an initial value problem, varying the initial 

conditions, and integrating the differential equations (i.e., “shooting” them forward) until 

the endpoint conditions are satisfied.  Numerous efforts have used shooting techniques to 

solve the reentry problem, including a modified simple shooting method that promises 

accurate and fast solutions [65].  Also, Zimmerman et al. separated a reentry trajectory 

into segments and applied two different guidance schemes (analytical heat rate and linear 

bank angle) that combined a classical shooting method with LQR tracking [66].     

For direct methods, the direct transcription (i.e., collocation) became a 

popular choice for reentry work primarily due to robustness and flexibility as a result of 

not having to explicitly include necessary conditions.   

Mease et al. used Boeing’s Sparse Optimal Control Software (SOCS) to 

solve a reduced-order, optimal reentry trajectory planning problem [67] that led to the 

development of EAGLE [68],[69].  Since some trajectory optimization methods have 

stringent requirements for good initial guesses, elaborate techniques are being pursued to 

generate initialization trajectories.  For example, Mooij has investigated parametric 

control variation analysis involving the use of statistical Taguchi methods to generate 

feasible trajectories [70].  Another common method used today is that of Model 

Predictive Control (MPC) and Receding Horizon Control (RHC) [71].  MPC and RHC 

are essentially the same techniques predicated on using a plant model to predict an output 

during a future time horizon and then compute the control commands by minimizing an 



17 

objective function.  Like DI-based methods, these methods also require very accurate 

plant dynamics as well as possible nonrobustness issues [72].     

It has long been recognized that multiple, often natural, time-scales exist 

in certain nonlinear dynamic systems, particularly in aerospace problems.  As such, a 

common technique for simplifying complex problems is to use time-scale separation to 

reduce the order of the dynamic equations.  Based on parameterizing terms in the 

equations of motion by a scalar ratio of low and high-frequency modes, the idea of time-

scale decomposition is to allow separate control design for the two modes and then piece 

them together for the full-order system.  This technique has been employed on numerous 

flight trajectory optimization applications over the years [73]-[77].       

To the best of the author’s knowledge, the only attempt at solving the full 

6-DOF reentry problem using collocation-based trajectory optimization also used a two-

timescale decomposition approach to separate the fast and slow dynamics in order to 

capture the high frequency effects of the rotational equations [78],[79].  This technique 

appears to have been a successful implementation for generating optimal reentry 

trajectories, but consequently added another layer of guidance design and analysis.  The 

proposed methodology of this dissertation is to use a PS method to solve the full 6-DOF 

reentry problem without relying on time-scale separation schemes to reduce the 

complexity of the problem, but instead offer a more simplified and direct approach.  

d. New Approach 
The proposed method departs from the traditional approach by abandoning 

the use of linearization, closed-form analytical approximations, reduced-order models, 

reference trajectory tracking, etc. and adopts a new approach based strictly on optimal 

control theory.  It is now well established that many of the challenges on entry guidance 

fall under the purview of optimal control theory.  Difficulties in solving optimal control 

problems have reflected difficulties in solving the entry problem. 

The general idea of optimal control is to generate an optimum control 

history that drives the trajectory from an initial condition to some final state while  
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minimizing (or maximizing) some performance index in terms of a cost function and 

subject to a series of constraints.  The cost function is typically represented in a Bolza 

form, 

 ( ) ( ) ( )( ) ( ) ( )( )
0

0 0 0, ( ), , , , , , ,( )
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f f f
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t

J t t E t t F t t t dtt t⋅ = +⋅ ∫u x x x ux  (1) 

where the Mayer term, ( )E ⋅ , is considered a fixed cost and the Lagrange term, ( )F ⋅ , is a 

running cost integrated over time.  This cost can then be minimized with respect to the 

states, x, the controls, u, and/or the clock times, 0t and ft , subject to constraint equations 

that includes nonlinear dynamics, ( ( ), ( ), )x f x t u t t= , paths constraints, endpoint 

conditions, and state and control limits.  Additional details of this standard optimal 

control problem and its formulation are discussed in Chapter II and numerous textbooks 

[80]-[82].  With the reentry problem posed as an optimal control formulation, a nonlinear 

optimization tool is used to solve the problem.  ASTOS, GESOP, POST, SOCS, OTIS, 

and DIDO are common trajectory optimization tools used for aerospace applications.  In 

this work, the pseudospectral-based DIDO software package is employed.  Additional 

details are discussed in Chapter II with appropriate references.     

Overall, the goal of this approach is to transition to simple, autonomous 

G&C using real-time nonlinear trajectory optimization.  This approach avoids G&C 

techniques that require labor intensive off-line design and analysis such as 1.) gain tuning 

and gain scheduling, and 2.) developing reference trajectories (i.e., nominal profiles) and 

selecting/designing control techniques to track them.  Instead, the proposed approach 

significantly simplifies the development of the problem in the sense that it only requires 

an optimal control formulation that exploits the power of PS methods.  More specifically, 

this approach avoids unnecessary model reductions, linearization, trajectory 

segmentation, and superfluous constraints such as equilibrium glide (i.e., trimmed flight) 

and zero sideslip.  In addition, this approach, to some extent, dismisses the notion of 

separating the outer and inner-loop of the standard G&C system architecture by assuming 

an integrated, single-loop architecture as depicted in Figure 1.6.  Chapter VI provides 

more details about these architectures.    
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Figure 1.6 Typical “Separated” and New, “Integrated” G&C Architectures.  

 

One immediate benefit of this proposed approach is that the integrated loop now assumes 

the role of the control allocation that is often separate from the trajectory optimization 

scheme in other inner-outer-loop architectures. 

 

C. MOTIVATION 
Despite recent efforts that have shown that reentry trajectory optimization 

problems are routinely solvable and viable for real-time, on-board applications [83]-[88], 

the perception that they are “not robust enough,” [89] “computationally too complex to 

be solved in real time,” “not meaningful,” [90] and “ill suited for on-board 

implementation” [91] are still prevalent.  Therefore, with such perceptions still prevalent 

in the literature, one of the primary motivations of this dissertation is to show that the 

proposed method is a viable approach for real-time, onboard applications and warrants 

further research investment.  
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The general motivation for considering optimality, in addition to the usual 

problems of constraints and nonlinearities, is that optimality dictates the engineering 

feasibility of a space mission.  Whether or not it is explicitly stated, optimality is 

inherently required for feasibility, safety and other considerations.  Traditional feedback 

control methods that are not based on optimality considerations may cause a system to 

perform short of its true capabilities.  Fahroo has shown that traditional feedback control 

laws may also diminish safety margins when based on approximate, reduced-order 

models [85].  Another aspect of reentry safety is the size of the footprint: the larger the 

footprint, the safer the entry guidance as it implies the availability of additional landing 

sites for exigency operations.  Thus, footprint maximization is part of the entry guidance 

requirements [86].  Consequently, entry guidance algorithms that are not based on 

optimal control compromise safety [87].  The following sections outline specific areas 

that spawned the motivation for the research work presented in this dissertation.   

1. Enhanced Performance: Autonomy, Reliability/Safety, Adaptability, 
and Cost  

A primary motivation of this dissertation is to address the endemic interest in 

“smart” systems that have more autonomous capability.  As such, a goal of this research 

is to enhance performance by improving autonomy, reliability/safety, adaptability, and 

cost.  Although there are various elements that contribute to making a system 

autonomous (planning, execution, system identification, adaptive control, sensor fusion, 

etc.), each element is influenced by three fundamental factors: mission complexity, 

environmental difficulty, and human interface.  Regardless of the approach taken, each of 

these factors must be addressed.  That is why the real “brain” of any autonomous system 

is the element of planning.  In particular for vehicle motion, it is path planning (a.k.a. 

trajectory generation) that plays a critical role in the overall intelligence of the system.  

Planning is one of the primary elements of human intelligence that makes us 

extraordinary.  In addition to our acute sensory perception, data processing, and motor 

control skills, most of our deliberate actions are a result of plans.  Whether they are 

carefully and consciously or rapidly and subconsciously carried out, it is the intellectual 

capability of planning that allows us to accomplish a goal.  Thus, for unmanned 

autonomous vehicles, path planning is not only required, but to effectively carry out 

certain missions requiring timeliness, real-time path planning is paramount.   
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Planning and scheduling is based on the ability of a system to generate low-level 

sequence of tasks that can accomplish formalized high-level goals.  Traditional planning 

and scheduling has relied on humans to pre-program a set of actions to accomplish a pre-

planned task or series of tasks.  The focus for an intelligent system is to automatically 

determine the tasks required to accomplish overall mission objectives.  Figure 1.7 

illustrates various GNC methods that attempt to satisfy requirements and capabilities 

associated with intelligent/autonomous systems.   
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Figure 1.7 Using Guidance, Navigation, and Control Methods for  

Intelligence / Autonomy. 

 

Note that modeling, in terms of both vehicle and environment, play a key role in how 

GNC methods provide enhanced capabilities.  In other words, it doesn’t matter how 

autonomous the system is, if it operates based on a very crude model, then its 

effectiveness (i.e., capability) will be significantly hindered. 

Additionally, another motivation for this research is to demonstrate how optimal 

control theory can be applied to an unmanned RLV in order to not only make it more 

intelligent, but to make its actions more desirable.  Figure 1.8, adapted from the Joint 

Architecture for Unmanned Systems (JAUS) [92], shows the autonomy spectrum for 

various objectives of unmanned systems.  Note the location of path planning is not very 

high and right on the chart.  Historically and even today, a tremendous amount of man-

hours go into planning trajectories.  Since current vehicles have very limited on-board 

planning capability, much of the work must be performed manually off-line with a 
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majority of work consisting of engineering judgment (i.e., human decisions).  This is one 

reason why there is increasing demand to improve aerospace vehicle autonomy, to 

alleviate many man-hours of design and analysis.  Preplanning is an acceptable approach 

for flight under nominal conditions with a perfect model; however, in the case of 

unforeseen failures, modeling errors, unpredicted uncertainties, large disturbances, etc., 

pre-planning alone is not sufficient.  It is in these off-nominal, unplanned situations that 

real-time trajectory generation is paramount.  Shifting to the far, top-right will not only 

make the system more autonomous, but can potentially replace other objectives like path 

following.  It will be shown in later chapters that computing an optimal path in real-time 

provides benefits typically associated with feedback and adaptive methods; therefore, 

opening the possibility of replacing path following, adaptive behaviors, and disturbance 

rejection in the spectrum.  Implementing an optimal path planning technique based on 

optimal control theory, can substantially improve the desired autonomous behavior 

portrayed in Figure 1.8.  Note that this figure was originally developed for low-speed, 

powered unmanned aerial vehicles (UAV) where path planning is not as difficult as 

unpowered hypersonic entry. 
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Figure 1.8 Autonomy Spectrum Adapted from Ref. [92]. 

 

Since optimal solutions are rarely intuitive, not to mention almost impossible to 

manually calculate, it is reasonable to assume that the capability of onboard optimal 

trajectory generation could potentially improve safety.  For example, consider the 

February 1, 2003 Space Shuttle tragedy (STS-107) where the Orbiter failed during 
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reentry over the western United States.  Hypothetically, suppose that the astronauts 

and/or the NASA ground team knew of the damaged tiles shortly after their deorbit burn.  

At this point, the Shuttle is committed to reentry and there is nothing they can really do 

about changing their trajectory besides manual override.  Even with manual control, they 

have only seconds to determine a new flight path and take a new course of action.  If it 

was possible to save the vehicle by altering the flight path a certain way, maybe a way 

that would minimize heat load on the damaged area, then they or the ground team would 

never have enough time to calculate a new trajectory without the use of a real-time, 

optimal trajectory generator.  Although this dissertation does not contain analysis to 

support this hypothesis, addressing this type of scenario with trajectory optimization 

methods is worth future investigation.  

The key is to embrace autonomy and generality and avoid specific methods that 

have limited applications.  With high costs associated with integrating complex and high 

risk systems, generality becomes a critical cost driver.  By eliminating the need for 

vehicle-specific algorithms, the same guidance system should be usable in any vehicle in 

a “plug-and-play” fashion.  This will reduce many aspects of cost – concept and 

prototype development, testing and verification, manufacturing and reproduction, 

maintenance, etc.  This is a key advantage of the proposed method as compared to more 

recent research efforts involving the integration of different guidance methods to solve a 

complete launch vehicle problem [93]. 

2. Unified Approach: Simple, Effective, Robust, and Safe 
A secondary motivation of this work is to provide a unified approach to RLV 

G&C that is simple, highly effective, robust, and safe.  As illustrated in Figure 1.7, the 

development of new GNC methods is focused on achieving “smart” systems in order to 

provide more autonomous operations; however, in most cases, the methods are designed 

to a specific problem, and in some cases, to a specific vehicle.  For example, methods that 

impose the so called equilibrium-glide condition [94], may be unnecessarily restricting 

maneuverability. Likewise, most reentry G&C methods force zero sideslip, especially in 

reduced-order models.  Again, this limits maneuverability at lower speeds and lower 

altitudes unless a change to the algorithm is made mid-course to allow non-zero sideslip.  

This is one reason that many approaches to solving the reentry problem segment the 
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trajectory and solve independent flight phases using different GNC methods for each 

phase.  It is conceivable that the notion of stability/controllability is one of the main 

reasons why such methods hinge on forcing such conditions.  In general, engineering 

assumptions, primarily an act of simplifying the problem, are usually problem-specific 

and vehicle-specific.  By reducing the number and severity of assumptions, methods can 

be more general; hence, capable of solving various vehicle-independent problems.  Also, 

numerous methods being pursued are very complex in the sense that they use very 

cumbersome mathematics, various combinations of analytical and numerical techniques, 

etc. 

3. Modeling Issues in Footprint Generation 
Over the last few decades, it has become customary to address the difficulties in 

entry guidance by way of reduced-order modeling and analysis [95],[96].  In a series of 

papers [85]-[87], Fahroo et al. showed that reduced-order modeling can compromise 

safety by predicting diminished footprints.  That is, a reduced-order model may falsely 

imply that a preferred landing site was not reachable thereby generating a failure mode 

that could otherwise have been prevented.  Thus, entry guidance algorithms that are not 

based on optimal control and reasonably high fidelity models compromise safety.  This 

concept was further clarified by Shaffer et al. [47] who showed that optimal control 

techniques can also address trajectory reshaping in the presence of actuator failures.  It 

has thus become increasingly clear in recent years that optimal trajectory generation is 

not a mere luxury but an absolute necessity for safe entry vehicle guidance.  Furthermore, 

it is not sufficient to generate optimal trajectories for low-order models, but for 

sufficiently high fidelity vehicle and dynamical models.  At the present time, it is unclear 

what qualifies as a sufficiently high fidelity model.  For example, Shaffer et al. showed 

that high-fidelity aerodynamic models were crucial for ensuring that control failure 

induced state-dependent control constraints were represented for proper guidance in the 

Mach-alpha space.  Fahroo et al. showed that high-fidelity dynamical models were 

crucial for footprint maximization.  One way to address these issues is to construct 

models of increasing fidelity for a new kind of analysis that exploits all the modern tools 

available for solving optimal control problems.  This is precisely the approach adopted in 

this dissertation.   



25 

Traditional methods avoid high-fidelity modeling based on reasons of 

“complexity” and computational speed, but as vehicles and computers become more 

advanced, higher-fidelity modeling offers more accurate solutions and these solutions 

become attainable with advances in numerical methods and computational power.  

Reduced order models typically produce adequate results but are providing near-exact 

solutions to approximate problems.  It may be more advantageous to provide an 

approximate solution to an exact problem.  Yet, it is often the case that the reduced-order 

models are providing wrong answers.  This may also be true for complex aerospace 

vehicles where the rotational dynamics and translational kinematics operate at different 

frequencies.  Typically, as long as the frequency separation is adequate, the reduced order 

models work fine.  The problem comes from changes in the forces due to failures and 

rotational tracking requirements as well as new constraints that may arise from failure 

conditions.  Regardless, various research efforts have shown that inaccurate and/or 

misleading solutions can result from using low fidelity modeling [85],[26],[97].  For 

example, for the specific application of a RV in atmospheric flight, some rotational 

effects may be absent or conflicting when considering inner/outer-loop simulations.  

Current, more powerful, numerical methods can efficiently provide accurate solutions to 

large systems of nonlinear Ordinary Differential Equations (ODEs). 

Figure 1.9 illustrates an example of potential problems with using low fidelity 

models for footprint generation.  The two regions show “exaggerated” maneuverability 

envelopes for a low-fidelity model and a high-fidelity model.  Here, the high fidelity 

model expands the envelope (reachable set) which is clearly an increase in performance 

whereas the low-fidelity model simplifies the physics of the problem and consequently 

reduces the maneuverability envelope.  Not only could the envelope be smaller, but it 

could incorrectly portray what is physically possible as indicated by the region around 

Air Field 3.  Starting from the initial condition (IC), Air Field 1 is reachable under both 

envelopes, but Air Field 2 and Air Field 3 are not.   

 

 



26 

 
 

Figure 1.9 Maneuverability Envelopes Illustrate Problems with  
Low-Fidelity Solution. 

 

Consider two specific examples indicated by “Case #1” and “Case #2.”  First, 

assume the vehicle is originally planning to land at Air Field 2 and experiences a failure 

corresponding to the “IC” mark.  For the low-fidelity model, it is no longer viable to 

reach Air Field 2, but it can reach the alternate, Air Field 1.  In this case, even though it 

falsely thinks it cannot reach Air Field 2, it still may have a feasible alternative.  In 

comparison, the high-fidelity model can reach both.  Second, assume the vehicle is 

originally heading to Air Field 3 and experiences a failure corresponding to the “IC” 

mark.  Now, the low-fidelity model provides incorrect information, a FALSE POSITIVE 

that it can reach Air Field 3 when in fact, it cannot, so it will unsuccessfully attempt to 

make it.  This case will end in, the very least, an emergency situation that could have 

been prevented simply by using the high-fidelity model.  This is important now more 

than ever since current research is developing on-board, replanning and retargeting 

guidance schemes.  Even if using low-fidelity-based methods, the vehicle still needs 

high-fidelity answers during real missions to definitively determine feasibility.   
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4. Problems Associated with Decoupling Inner/Outer Loops –The Case 
for “Integrated” G&C 
Traditionally, inner and outer loops are decoupled such that they are 

actually being solved separately.  This may be fine for simple linear systems with 

sufficient frequency separation, but for complicated nonlinear systems there may be more 

to the inner-outer-loop interplay that can have detrimental effects on system performance.  

As mentioned previously, Shaffer’s work revealed a disconnect between the inner-loop 

control allocator and outer-loop guidance when solving an X-33 RLV reentry problem for 

footprint determination under nominal and control effector failure scenarios [46].  This 

work solved a 3-DOF X-33 trajectory optimization problem using interpolated 

aerodynamic data that incorporated 6-DOF wing, body and trim effects from a given 

vehicle flight condition and an optimized effector displacement vector.  This essentially 

decoupled the outer loop from the inner loop, but still provided the outer loop with a 

feasible range of Mach and angle-of-attack combinations along with the 6-DOF 

aerodynamic effects.  However, conflicting cost functions between the inner-loop optimal 

control allocation problem and the outer-loop optimal guidance problem caused the failed 

vehicle to provide better performance than the nominal vehicle.  This specific case was a 

result of improperly defining the control allocator cost function to minimize control 

surface deflections; however, there could be additional underlying sources of error.  For 

example, the inner-loop control algorithm uses a piecewise linear programming (PLP) 

method to approximate the nonlinear optimal control allocation whereas the outer-loop 

guidance uses a direct method to solve the full, nonlinear system. 

Additionally, since many efforts associated with the development of reentry G&C 

add a requirement for trimmed flight; the next section summarizes steady-state flight and 

trim conditions and addresses why trim may be unnecessary when utilizing optimal 

control to solve the full 6-DOF problem.   

5. Requirements for Trimmed Flight 

a. Steady-State Flight and Trim Conditions 
In the dynamical sense, steady-state implies that there are no changes over 

time and as such the forces and moments acting on the vehicle’s body must be constant or 

zero.  Likewise, the angular rates (p,q,r) and the aerodynamic angles must be constant 
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and hence their derivatives are zero.  Steady-state “trimmed” flight is an equilibrium 

condition based on the balance of these forces and moments such that quasi-static 

conditions are achieved.  For example, pressures and shear stress distributions over the 

wing-body create a longitudinal pitching moment that act on the vehicle.  Trim is attained 

when this pitching moment is cancelled as a result of forces generated from control 

surface deflections that counter the wing-body moment and achieves static equilibrium in 

the pitch axis.  In the conventional sense, longitudinal static stability is achieved when the 

pitching moment at zero lift is positive 
0

( 0)mC >  and the corresponding slope of 

.mC vs α  is negative ( / 0)mC α∂ ∂ < .  Note that a control surface can also be used to move 

the vehicle to a different, pre-determined equilibrium point.  Also, the equilibrium point 

is typically influenced by wind-relative incidence angles such as the angle-of-attack ( )α .  

For example, the angle-of-attack that causes zero pitching moment is termed the 

“trimmed” angle-of-attack ( )eα .  More on this can be found in Refs. [98]-[100].   

Although static stability is not sufficient to ensure dynamic stability, a 

dynamically stable vehicle must always be statically stable [100].  For example, when the 

vehicle initially tends towards its equilibrium position after a disturbance (statically 

stable) and continues over time to the equilibrium, then it is dynamically stable.  

However, if after its initial turn towards the equilibrium point it diverges away, then the 

vehicle is dynamically unstable yet statically stable. 

b. Maneuvering Flight  
For maneuvering flight, control surface deflections create non-equilibrium 

accelerated motions (rotational and translational accelerations).  In this case, there is not 

necessarily a balance of forces and moments unless a specific maneuver is perfectly 

coordinated such that the state derivatives are zero.  For example, this occurs during a 

“steady-state, coordinated turn” discussed later. 

Control methods employing linearization techniques often enforce steady-

state “trimmed” flight when studying aircraft dynamics and performance since they 

consist of linearizing about some nominal equilibrium set-point.  Also, flight simulations 

often prefer trimmed initial conditions.  Historically, the design of flight control systems 

was also based on trimmed flight conditions.  For a specified flight envelope, various 
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operating conditions would be set as nominal points at which the equations of motion are 

linearized.  The linearized equations corresponding to these set-points would then be used 

to design a controller with appropriate gains to form a set of “scheduled” gains that span 

the entire flight envelope or at least the effective region that the control is active.   

c. Equilibrium Glide and the Reentry Problem 
For typical reentry trajectories, a large portion of the trajectory is 

considered to be an “equilibrium glide” whereby the vertical component of acceleration is 

small along with a small and slowly varying flight path angle.  Essentially, glides become 

shallower as the L/D ratio increases with the maximum glide being associated with the 

smallest equilibrium glide angle that occurs at maximum L/D.  This is approximated in 

the 3-DOF dynamic equations of motion by setting 0γ = , referred to as the equilibrium 

glide condition (EQC) [31].  As such, a simplified 3-DOF equation for γ  reduces to an 

algebraic equation in terms of altitude, velocity, and bank angle that allows the velocity-

altitude profile to be shaped by the corresponding bank angle.  Also, as pointed out in 

Ref. [94], the flight path angle and bank angle still vary with time during this so called 

equilibrium glide and is therefore re-termed “quasi-equilibrium glide condition (QEQC).”  

A formal analysis of these conditions can be found in reference [94].   

d. Requirements for Coordinated Turns 

Coordinated turns, or coordinated maneuvers in general, are traditionally 

preferred for manned flights in order to provide an acceptable comfort level [26].  Also, 

maximizing aerodynamic efficiency and minimizing structural loads is a performance 

requirement that is usually achieved by minimizing the sideslip angle throughout the 

flight.  A perfectly coordinated turn is one in which the sideslip angle is zero as a result 

of the side force from gravity being counteracted by the vehicle’s yawing-motion.  Also, 

a steady-state turn can be reached after the transient accelerations subside such that the 

first and second state-derivatives are zero.       

Although structural loads are still a concern for unmanned vehicles, 

comfort is not.  This allows more flexibility in the maneuvers such as faster rates and 

slightly larger loads.  An excellent example of the potential performance benefits of 

unmanned versus manned flight is demonstrated by the results of a fuel-optimal trajectory 
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simulation for UAVs [101].  This paper shows that the optimal endurance path is an up 

and down oscillatory motion as a result of full-thrust, idle-thrust “bang, bang” control.  

Although sideslip is not usually desired at high velocities such for the case 

of reentry, forcing this condition in any simulation, especially one seeking an “all-or-

nothing” objective such as making a landing field, places unnecessary limitations on the 

obtainable flight path.  From a practical flight perspective, there are times when 

purposely reducing aerodynamic efficiency (e.g., by inducing sideslip angle) is desired. 

For example, in a higher than normal approach to landing, a “slip” can be used to quickly 

reduce altitude in order to not overshoot the intended landing spot.  Therefore, forcing a 

zero sideslip condition in the model could result in the false notion that a landing site or 

final target condition is not reachable when it may be that only a small sideslip is needed.  

This relates to the whole idea of why using a reduced-order model may not be solving the 

correct problem or inducing unnecessary constraints.  Besides, modeling the appropriate 

structural limits as constraints is a more practical approach that does not limit the 

“realism” of the model by use of “artificial” constraints such as zero sideslip.          

e. Nonlinear Control and Issues with Trim Requirement 
Current and future efforts will likely make use of nonlinear control 

methods that steer away from linearization and gain scheduling, especially for 

autonomous vehicles that operate over a large range of flight conditions that have strong 

nonlinear behavior.   

For control of complete nonlinear systems, such as the reentry problem 

using the full 6-DOF nonlinear equations of motion, enforcing trim conditions is not 

necessary.  Traditionally, flight control algorithms were designed around trim conditions 

at various points in the operational flight envelope primarily because linearization 

techniques were employed.  In addition, an advanced nonlinear simulation should be able 

to not only start at arbitrary initial conditions, but also to find equilibrium points from 

which to start.   

In the case of control surface failures, it may be required to first stabilize 

the vehicle by imposing trim conditions via a control allocation scheme.  Such schemes 

usually attempt to minimize some cost function with the goal of finding the control that 
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produces the desired trim condition with control inputs that are as close as possible to a 

set of desired control inputs.  Although this condition will vary with flight condition, in 

most cases it involves ensuring that certain state derivatives are zero (i.e., steady-state).  

Once equilibrium is achieved, maneuvering may be possible assuming there is enough 

control authority available with the given failure.  The challenge then becomes flying 

with degraded performance and possibly limited characterization/understanding of the 

failure and its effect on autonomous system performance.     

f. Reconfigurable Control via Control Allocation 
Recent efforts have focused on reconfigurable control through use of 

advanced adaptive control and control allocation methods.  For a vehicle that encounters 

a control failure, such as a locked control surface (i.e., fixed deflection position), the goal 

of the on-board flight control system is to reconfigure the remaining controls such that 

the vehicle is still controllable and can still track the desired reference inputs provided by 

the guidance computer.  Hence, the control allocation scheme is responsible for 

determining how to distribute or to “allocate” the remaining control effectors such that 

the desired moments or accelerations are generated.  This problem is only valid for an 

overdetermined system (i.e., the number of control effectors is greater than the number of 

axes to be controlled).  For example, given a pre-failure and post-failure nonlinear control 

system, ( , , )x f x u t= , represented as 

 
  
 
 
 

where the * indicates the pre-failure state, control, ur is the remaining control, and ud  is 

the postfailure influence represented as a disturbance input.  Then for the pre and post-

failure system to provide the same performance, the allocator should find ur such that 
*( , ) ( , ) ( , )r r d dg x t u g x t u g x t u+ = .  Note that for an “integrated” G&C system 

capable of real-time trajectory generation, tracking a reference input is not required since 

the reference is continuously updated…similar to feedback in the guidance loop of a 

traditional inner-outer-loop G&C configuration.   

 

* *( , ) ( , )
pre-failure

x f x t g x t u= + ( , ) ( , ) ( , )

post-failure
r r d dx f x t g x t u g x t u= + +
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g. Trim Requirements 

It is usually desired to stabilize the vehicle immediately after a control 

failure (e.g.,, jammed effector) by driving the system to some equilibrium point.  Using a 

control allocator to achieve this trim condition provides knowledge of the effector 

positions and hence allows calculation of their contributions to forces which heavily 

influence the performance capabilities of the vehicle.  For example, assuming steady-

state flight with coordinated-turns (zero sideslip) as the desired trim condition, the control 

allocator will try to zero out the roll and yaw moments and balance the pitch moment 

produced by the adverse effects of the failure.  Balancing the moments result in zero 

angular accelerations in pitch, roll, and yaw.  However, trim conditions are typically used 

if the objective is to track a reference trajectory or the failure causes significant 

instabilities (depends on flight configuration at time of failure) that require stabilizing 

about some known equilibrium state.  Otherwise, in the case of maneuvering flight, 

forcing trim and in this case, forcing zero sideslip, may limit the maneuverability 

envelope of the vehicle.     

The key is knowing where the effectors are positioned and in a practical 

sense, this can be done by smart actuators that are available today.  For a given failure 

and known effector position, the forces and moments can still be approximated assuming 

the surface is locked in a position that lies in the range for which aerodynamic data exists 

(i.e., within control surface limits).  Effectors can lock or saturate, but as long as axis 

saturation does not occur, the vehicle will remain controllable.  It may be desired to at 

least check that trim is attainable in order to stabilize the vehicle to some known steady-

state equilibrium condition, but if the full 6-DOF dynamics are considered in a trajectory 

optimization problem (based on optimal control and NLP), the allocation of controls to 

achieve the objective would be based solely on the control constraints.  In this case, the 

effector failures are mapped to changes in the control constraints and the optimization 

problem will continue to minimize the objective function with a modified set of 

constraints.  This concept is illustrated by the “Re-Model Constraints” block of Figure 

1.10.   
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( , , )x f x u t=

*δ

 
 

Figure 1.10 Conceptual Block Diagram of Optimal Trajectory Generation for  
Handling Control Failures without Control Allocation. 

 
 

If there is a problem with convergence as a result of vehicle instabilities or 

erratic maneuvers, it is possible to reduce angular velocities by adding a penalty to the 

optimization objective function in the form of a weighted Lagrange cost.  However, if the 

optimization problem formulation includes realistic constraints, then the vehicle should 

not perform any maneuvers that are not realizable by the control system.   

 

D. CONTRIBUTIONS  
The primary contribution of this dissertation is the development of a new, unified 

approach for the autonomous G&C of the highly constrained and nonlinear RLV reentry 

problem.  This work combines many of the emerging concepts in real-time optimal 

control to address the difficulties in entry guidance.  To this end, this work circumvents 

the traditional problems that arise in entry segmentation (such as the concept of TAEM), 

reference trajectory tracking, and separate G&C-loop architectures and instead embarks 

on using a single algorithm to guide the vehicle from its entry conditions all the way to a 

neighborhood of the landing site.  This vehicle-independent approach relies on a PS 

method wrapped into a user-friendly software package that offers simplicity, generality, 

and robustness.      

Second, the proposed method is based solely on optimal control theory and entails 

the development of a high-fidelity, 6-DOF model that addresses an important issue in 
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model fidelity and its impact on safety.  This 6-DOF approach is unique because it 

replaces or augments the traditional, separated inner and outer loop G&C architecture 

with an integrated, single-loop structure for generating optimal solutions.  As an alternate 

approach to the full, 6-DOF architecture, this research also provides a means of 

integrating 3-DOF optimal guidance with 6-DOF tracking control.   

Third, part of this research involved expanding the capabilities of trajectory 

optimization and as such, this dissertation demonstrates the viability of using the PS-

guidance method for onboard applications to include footprint generation, 

intelligent/autonomous trajectory generation to a designated landing site, and retargeting 

alternate landing sites as a contingency operation. 

In addition to some of these onboard applications, a unique contribution of this 

research is the implementation of a PS-feedback method to the RLV reentry problem.  

This real-time implementation demonstrates the method’s viability for use in optimal 

guidance algorithms that require corrective maneuvers from the perturbed trajectory in 

addition to validating new theoretical developments in the field of PS-based optimal 

control.   

 

E. DISSERTATION ORGANIZATION 
The organization of this dissertation attempts to lead the reader through a logical 

progression of developments culminating with the implications of the high-fidelity, 

trajectory optimization capabilities presented throughout the chapters.  Chapter II begins 

with summarizing the theoretical foundations and highlighting some mathematical 

preliminaries essential in understanding the framework for pseudospectral optimal G&C 

and how it is used to solve the RLV reentry problem.  Chapter III then introduces the 

RLV model used for this study, a succinct review of the development of the standard 6-

DOF equations of motion, their limitations in the context of optimal control problem 

formulation and optimization suitability, and proposes an alternate dynamical model 

specifically for flight vehicle trajectory optimization.  Chapter III also includes brief 

discussions on modeling the environment, model reduction from 6-DOF to 3-DOF, and a 

homotopy path to modeling including emphasis on model fidelity and its implications on 
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solution accuracy.  Chapter IV presents results from a 3-DOF RLV model with the 

intent of testing the various G&C ideas for possible 6-DOF implementation (i.e., proof-

of-concept).  This includes open-loop, optimal trajectory optimization that demonstrates 

intelligent path planning, on-board retargeting capability, and closed-loop, optimal 

trajectory optimization that demonstrates the efficacy of a PS-feedback method as well as 

validates the conjecture that real-time open-loop is closed-loop.  Chapter V serves as 

“transitioning” work from a 3-DOF to a 6-DOF optimal G&C architecture by 

demonstrating optimal trajectory tracking.  Chapter VI, the crux of this research, 

presents the 6-DOF results for various model formulations and exposes some important 

issues involved with high-fidelity trajectory optimization for RLVs.  For this chapter, 

particular emphasis is placed on feasibility analysis along with numerical considerations.  

Chapter VII concludes with a summary of this research work and the original 

contributions provided.  Chapter VIII ends the dissertation with some brief discussions 

on various open issues and opportunities for future work.  Chapter VII also includes a list 

of extended applications of the ideas and methods presented herein. 
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II. THEORETICAL FRAMEWORK FOR OPTIMAL GUIDANCE 
AND CONTROL  

A. OVERVIEW 
Since the majority of this research work depends on the application of nonlinear 

optimal control theory, it is necessary to summarize the details of the approach and 

highlight some of its benefits over more traditional methods.  Traditional methods 

involve finding closed-form solutions to Hamilton-Jacobi equations or the canonical 

Hamiltonian equations.  With the advent of more powerful computers, computational 

methods are now more widely accepted as a direct result of the numerous difficulties 

associated with solving a state and control-constrained nonlinear optimal control problem 

(NL OCP).  Numerical methods for solving the NL OCP typically fall into the categories 

of indirect or direct methods with many variations of each developed over the years (see 

Sec. B.II).  Due to its exponential convergence rate and successful history of solving 

complex NL OCPs, a general-purpose method, the Legendre pseudospectral (PS) method, 

is the method of choice for solving the class of reentry problems presented in this work.  

To solve the NL OCP, a spectral algorithm known as the Legendre PS method is 

employed in a MATLAB-based software package called DIDO [102] that was developed 

by Fahroo and Ross of the Naval Postgraduate School.  This method discretizes the 

problem and approximates the states, co-states and control variables by use of Lagrange 

interpolating polynomials where the unknown coefficient values coincide with the 

Legendre-Gauss-Lobatto (LGL) node points.  After this approximation step, a nonlinear 

programming (NLP) solver (SNOPT) [103] based on sequential quadratic programming 

(SQP), solves a sequence of finite-dimensional optimization problems that capture the 

full nonlinearities of the system.  The spectral algorithm uses the NLP solver sequentially 

to solve the OCP efficiently [104],[105].  Unlike other traditional methods, the PS 

method uses discretization to transform large-scale optimization problems into 

significantly smaller-scale problems; hence, improving both speed and convergence 

properties. 

Before outlining the specific PS solution methodology, it is first necessary to 

define some mathematical preliminaries regarding optimal control theory such as: 1.) the 
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NL OCP,  2.) indirect and direct methods,  3.) necessary optimality conditions and the 

minimum principle, 4.) the Karush-Kuhn-Tucker (KKT) Theorem,  5.) the NLP problem 

and 6.) verification of feasibility and optimality.   

 

B. OPTIMAL CONTROL THEORY 
Optimal control theory, sometimes referred to as dynamic optimization [106]-

[109], grew out of the Calculus of Variations (COV), perhaps one of the most influential 

mathematics of optimization theory.  Like COV that deals with extremal functions, the 

basic premise of optimal control involves finding the control histories that minimize a 

performance index subject to constraints in the form of differential equations.  It is the 

intent of this section to generalize the NL OCP, define the necessary optimality 

conditions, and state the fundamental principles that form the framework for the solution 

methodology implemented in this work. 

1. The Nonlinear Optimal Control Problem (NL OCP) 
As with any dynamical optimization problem, the cost function (a.k.a. objective 

function), dynamic constraints (i.e., governing equations of motions), mixed state-control 

path constraints, endpoint constraints (i.e., boundary limits on initial/final conditions), 

and any additional equality or inequality constraints (on states and/or controls) must be 

defined.  As such, the general OCP for trajectory generation is fully posed with the 

respective constraints in the following manner: 
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 (2.1) 

The goal is to find a state-control function pair, ( ) ( ){ },x u⋅ ⋅ , or sometimes clock 

times, 0 and fτ τ , that minimizes the performance index represented by the Bolza form, 

( )J ⋅ , consisting of either a Mayer term, ( )E ⋅ , a Lagrange term, ( )F ⋅ , or both as stated in 
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Eq. (2.1).  The general OCP dimensions can be expressed in terms of the number of state 

and control variables, andx uN N , respectively, such that andx uN Nx u∈ ∈ .  Also, it is 

assumed that the following functions are continuously differentiable with respect to their 

arguments. 
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 (2.2) 

After formulating a problem according to Eq. (2.1), it can be solved by either indirect or 

direct methods. 

2. Indirect and Direct Methods 
Numerical Methods for solving the NL OCP typically fall into one of two 

categories: indirect or direct methods [110].  Indirect methods are based on root-finding 

techniques associated with numerical search of finding boundary values for states and 

costates that minimize cost and satisfy constraints.  Such root-finding techniques are the 

common Newton’s Method that must satisfy necessary conditions like ( )( ) 0f xf x
x

∂
∇ = =

∂
.  

On the other hand, direct methods attempt to minimize some objective function that 

results in a sequence of improving solutions until attaining an optimal value.  In terms of 

optimal control theory, the indirect method requires the COV to establish and solve the 

necessary optimality conditions.  Depending on the complexity of the problem, this can 

often be a challenging task.  Despite some successful implementations of indirect 

methods [110]-[114], they still have numerous problems.  One of the main drawbacks 

(mostly due to practical limitations) with indirect methods is that they require relatively 

accurate initial guesses in order to provide feasible trajectories [115],[116].  Unlike the 

direct method, the indirect method also requires the explicit derivation of necessary 

conditions, to include the adjoint, control, and transversality as presented in a general 

context below.        
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3. Necessary Optimality Conditions and the Minimum Principle 
The necessary conditions needed for optimality first requires the formulation of 

the control Hamiltonian 

 ( ( ), ( ), ( ), ) ( ( ), ( ), ) ( ) ( ( ), ( ), )TH H x u F x u f x uλ τ τ τ τ τ τ τ λ τ τ τ τ≡ = +  (2.3) 

where : x x uN N NH × × × → , ( )F ⋅ and ( )f ⋅ correspond to the OCP formulation in 

Eqs. (2.1) and (2.2) as the Lagrange cost and the vector field for the right hand side of the 

differential equations of motion, respectively, and the states and costates given as 

andxN NTx λλ∈ ∈ , respectively.  The Hamiltonian adjoins the state dynamics to the 

Lagrange term in the cost function using the Lagrange multiplier, λ .  Lagrange 

multipliers are the duals of the primal solution and represent sensitivity to the constraints 

– “tightness” of constraints [117].  For example, if a multiplier is large, then it indicates 

that the corresponding constraint is important for the solution.   

When minimizing the cost function to determine the optimal states, costates, and 

controls * * *( , , )x uλ , the following conditions are required for optimality.  First, the 

partial derivative of the Hamiltonian with respect to the Lagrange multiplier must recover 

the state dynamics given by the state equation   
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( ), ( ),

H x ux

RHS of dynamic equations f x u
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λ τ

τ τ τ

∂
=

∂

⇒ =
 (2.4) 

Next, the costates must “shadow” the state dynamics and satisfy the adjoint 

equation 

 
* * *

* ( ( ), ( ), ( ), )( )
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H x u
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τ

∂
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∂
 (2.5) 

Finally, it is necessary that the control, u , globally minimizes the Hamiltonian for 

all time, 0[ , ]fτ τ τ∈ , such that for problems with no constraints on the controls, the 

optimality equation is 

 
* * *( ( ), ( ), ( ), )0

( )
H x u

u
λ τ τ τ τ

τ
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=
∂

 (2.6) 
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and for problems with constraints on the controls, a static optimization problem is formed 

where by the Hamiltonian is minimized with respect to the control at each instant of time 

(i.e., “point-wise”).  

 
min ( , , , )

. .
u

H x u

s t u

λ τ⎧⎪
⎨

∈⎪⎩ U
 (2.7) 

where U  is the set of allowable controls (i.e., the admissible set).  This is referred to as 

the Hamiltonian Minimization Condition (HMC) and is based on Pontryagin’s Minimum 

Principle [118] such that 

 * * * * *
0( ( ), ( ), ( ), ) ( ( ), ( ), ( ), ), [ , ]fH x u H x uλ τ τ τ τ λ τ τ τ τ τ τ τ≤ ∀ ∈  (2.8) 

whereby *u is the extremal control solution sometimes symbolically expressed as  

 *( ) arg min ( , , , )
u U

u H x uλ τ
∈

⋅ =  (2.9) 

Note that depending on the sign convention in the definition of the Hamiltonian, this is 

sometimes referred to as the maximum principle [80],[82].   

Depending on specific boundary conditions (free vs. fixed), an additional set of 

transversality conditions are required that incorporates the endpoint constraints and the 

Mayer term in the cost function.  The general Transversality Condition (TC) is given by  
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 (2.10) 

For example, if fτ were specified (i.e., “fixed” final time), then 0fδτ =  and fxδ is 

arbitrary such that the costate is “transversal” to the terminal manifold, ( , )f fe x τ ; 

therefore, Eq. (2.10) reduces to the Terminal Transversality Condition (TTC) 

 ( )f
f

E
x

λ τ ∂
=

∂
 (2.11) 

where E is the Endpoint Lagrangian given by 

 ( , , ) : ( , ) ( , )T
f f f f f fE x E x e xυ τ τ υ τ= +  (2.12) 
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and similar to λ in the Hamiltonian formulation, Eq. (2.3), υ  is the Lagrange multiplier 

associated with the endpoint constraint ( , ) 0f fe x τ = . 

On the other hand, if fτ were not specified (i.e., “free” final time), then 0fxδ =  

and fδτ is arbitrary such that Eq. (2.10) reduces to the Hamiltonian Value Condition 

(HVC) 

 ( ) 0f
f

EH τ
τ

∂
+ =

∂
 (2.13) 

where * * *( ) ( ( ), ( ), ( ), )f f f f fH H x uτ λ τ τ τ τ≡ . 

To indicate the nature of the Hamiltonian with respect to time and in accordance 

with the Minimum Principle, the minimized Hamiltonian evolves according to the 

Hamiltonian Evolution Equation (HEE)   

 HH
τ

∂
=

∂
 (2.14) 

Omitting the states, costates, and control’s dependence on time (i.e., ( )f τ ) for simplicity 

of notation, the totality of necessary conditions for optimality are succinctly written as 
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and with the appropriate boundary conditions this system of equations can be solved for 

the optimal states, costates, and controls.  Solving this system amounts to solving a two-

point boundary value problem (TPBVP) where the initial conditions of the states are 

usually known and the final conditions are determined from transversality, Eq. (2.10).  

Now, given Eqs. (2.3)-(2.14), the Minimum Principle is summed up by Theorem 1. 

 

Theorem 1: The Minimum Principle [109] Given an optimal solution { }* * *( ), ( ), ft⋅ ⋅x u  to 

the problem, there exists a costate, ( )⋅λ , and a covector, ( )⋅ν , that satisfies the Adjoint 

Equation, the HMC, the HVC, the HEE, and the Transversality Condition. 

Elaborating on the case of bounded controls (i.e., controls subject to inequality 

constraints), the sub-problem of minimizing the Hamiltonian, see Eq. (2.7), is solved by 

applying the Karush-Kuhn-Tucker (KKT) Theorem.  This consists of taking the 

Lagrangian of the Hamiltonian: 

 (..., , ) ( ) TH u H hμ μ= ⋅ +  (2.16) 

where μ  is a KKT multiplier and h is the control constraint vector such that the 

appropriate necessary condition becomes:  

 0
T

H H h
u u u

μ⎛ ⎞∂ ∂ ∂
= + =⎜ ⎟∂ ∂ ∂⎝ ⎠

 (2.17) 

Also, the multiplier-constraint pair must satisfy the following KKT Complementarity 

Conditions (CC): 

 

0 0
0 0
0

L L

L U U

U

if u u u if
if u u u u u if
if u u

μ

μ μ

⎧ ⎧≤ = ≤
⎪ ⎪

= < < ⇒ = ≥⎨ ⎨
⎪ ⎪≥ = ⎩⎩

 (2.18) 

 

4. The Generalized Karush-Kuhn-Tucker (KKT) Theorem      
The KKT theorem is the primary theorem used when solving nonlinear parameter 

optimization problems and in particular, the Hamiltonian minimization problem, given by 

Eq. (2.7).  In the typical NLP notation, according to Refs. [120] and [121], the general 

case NLP problem is stated as such: 
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NLP Problem (P):         
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where the dual variables are represented as iu  and jν  (i.e., Lagrange multipliers).  The 

corresponding KKT necessary optimality conditions for problem (P) are then  
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where the stationary condition is valid for n -nonlinear equations, the PF condition is 

valid for I -nonlinear inequalities and/or J -nonlinear equalities, and the CS condition is 

only valid for inequalities.  These generalized KKT conditions collectively represent the 

same necessary conditions posed in the OCP.  

It is often the case that direct methods cannot be solved analytically and as such, 

requires the use of iterative numerical techniques. 

5. Verification of Feasibility and Optimality 
To confirm feasibility and optimality of the extremal solution, both analytical and 

numerical methods exist.   

a. Propagation Test for Feasibility 
After confirming that constraints are not violated, feasibility of a 

computational solution can be verified by simply propagating the equations of motion 

with the extremal control and then comparing the DIDO state history with the propagated 

state history as illustrated in Figure 2.1.   
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t

x --- DIDO

 Feasible Propagation

 Infeasible Propagation

 
Figure 2.1 Illustration of Feasibility Test via Propagation. 

 

If the trajectories agree to within some acceptable error tolerance (zero error cannot be 

achieved with infinite precision), then the solution is feasible.  For simple problems, it 

may be possible to analytically verify that all the necessary conditions are satisfied (i.e., 

KKT conditions establish primal feasibility, dual feasibility, etc.)  Note however, that to 

guarantee optimality, second-order sufficiency conditions are required.  In the absence of 

costate information, application of Bellman’s Principle is effective at numerically 

confirming optimality. 

b. Bellman Test for Optimality 
Bellman’s Principle of Optimality is a simple, yet powerful tool for use in 

control applications.  This principle essentially states that by using any point on the 

original optimal trajectory as an initial condition to a new problem, with all other 

problem formulation parameters the same, should result in the same optimal trajectory 

with the same or better cost.  In the context of Figure 2.2, given an optimal trajectory 

from a point A to a point B, then the trajectory to point B from a point C lying on the 

optimal trajectory is also optimal [109].  Applying this principle to determine the 

“optimal policy” for a decision process [106] is what Bellman called dynamic 

programming, an extension of Hamilton-Jacobi theory.       
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Figure 2.2 Illustration of the Principle of Optimality. 

  

The direct application of Bellman’s Principle serves many purposes 

throughout the work presented herein.  Perhaps the most important use of the principle is 

to validate optimality by recalculating trajectories from intermediate points on the 

trajectory to ensure that they overlap the original optimal trajectory.  Also, this principle 

is a pillar of the closed-loop, PS-feedback method discussed in Sec. II.C.2 for three 

primary reasons.  First, it allows the use of previous optimal solutions for guesses to 

subsequent trajectories; hence, providing improved computational time.  As discussed 

later, computational speed plays a key role in the successful implementation of the PS-

feedback method.  Second, the principle can be used to evaluate solution accuracy by 

increasing the number of discretization points and comparing the trajectory to a solution 

using fewer points.  Finally, Bellman’s Principle can be incorporated into an anti-aliasing 

technique (e.g., 2a B -algorithm) [122] that captures the high-accuracy results associated 

with increasing discretization points (see Sec. II.C.2.D). Evidently, this idea of 

discretization points is a fundamental aspect of the solution methodology discussed next.       

 

C. SOLUTION METHODOLOGY 

1. Polynomial (Legendre) PS Method 
This section describes the specific polynomial-based PS method used for solving 

the NL OCP presented in the preceding section.  Note that the following description and 

notation of this method was adapted from Refs. [109], [119], [123], and the references 

therein.   

 

A 

C 
B 

MinCost(A B) = Cost(A C) + Cost(C B) 

 



47 

a. Overview 

The basic premise of a PS method is to discretize the NL OCP, restated in 

Eq. (2.21) for completeness, and approximate the states, co-states and control variables 

by use of Lagrange interpolating polynomials given as ( )NL t  where the unknown 

coefficient values coincide with the Legendre-Gauss-Lobatto (LGL) node points.  These 

interpolating nodes are more appropriately called quadrature points given by 

jt for 0,...,j N= and are distributed on the interval [-1, 1] where 0 1 and 1Nt t= − =  and 

for 1 1j N≤ ≤ − , jt are the zeros of the Legendre derivative, ( )NL t .   
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(2.21) 

 

One of the advantages of using the Lagrange interpolating polynomial is 

that the node points do not have to be equally spaced.  It is often the case that using 

equally spaced points leads to inaccurate approximations [124],[125].  In fact, optimal 

node placement occurs when the nodes are roots of global orthogonal polynomials such 

as the Legendre or Chebyshev (a.k.a. Tschebyscheff) polynomials as dictated by 

approximation theory [124]-[128]; hence, the use of LGL points in the PS method.  For 

example, Figure 2.3 shows the tendency of arbitrary spaced LGL node points to cluster at 

the end-points. 
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Figure 2.3 Optimal LGL Nodal Point Locations 

 

It is also of interest to note that the PS method is equivalent to a Galerkin method 

with the addition of quadrature as defined in Ref. [129] as “collocation-at-the-Gaussian-

quadrature-abscissa.”   

Now, in order to map time from the computational domain, [ 1,1]t ∈ − , to the 

physical domain, 0[ , ]fτ τ τ∈ , (i.e., tτ ) the following transformation  

 0 0( ) ( )
( )

2
f ft

t
τ τ τ τ

τ
− + +

=  (2.22) 

and its derivative  

 0

2
fd

dt
τ ττ −

=  (2.23) 

are used in the discretization of the OCP, Eq. (2.21).  After the domain transformation, 

the continuous state and control variables, respectively, are approximated by using thN -

degree polynomials of the form 
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where, for 0,1,...,j N= , 

 
2( 1) ( )1( )

( 1) ( )
N

j
N j j

t L tt
N N L t t t

φ −
=

+ −
 (2.26) 

are the Lagrange interpolating polynomials of order N such that 
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 (2.27) 

where jkδ is the Kroneker delta.   

When using Eqs. (2.24)-(2.26), the approximation is actually taking place 

between the nodes since the values at the kt points are exactly equal to the approximated 

values.   

The derivative of this approximating polynomial at the collocation points kt  

results in a matrix multiplication in the following form 
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where ( )kj j kD tφ= are the LGL points and are the entries of the ( 1) ( 1)N N+ × +  

differentiation matrix D given as, 
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D  (2.29) 

 

In this form, and using the linear mapping between the computational and 

physical domains, the derivatives of the state approximations satisfy the differential 

equations exactly at the node points as given by the condition 
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 ( )0( ) , ,
2

fN
k k k kx t f x u

τ τ
τ

−
=  (2.30) 

Remarks:  The PS D-matrix (2.29) works similar to that of a finite difference matrix in 

approximating derivatives except that equispaced data points are not required.  Also, a 

worthwhile discussion on the accuracy of Legendre spectral derivatives can be found in 

Ref. [119]. 

The strength of the D-matrix comes into play by the computational benefits of its 

sparsity structure.  Sparsity in the Jacobian matrix reduces the sensitivity in the BVP 

[115].  A review of sparsity patterns and associated computational benefits can be found 

in Ref. [130].  Also, depending on the problem, it is possible that a low number of 

discretization points can still provide relatively accurate solutions [131]-[133]. 

In addition to the derivative approximation, integral approximation is necessary 

for the integral portion of the cost function stated in Eq. (2.21).  Since Gauss quadrature 

results in superior performance over other integral approximation rules [125],[134] and to 

include the interval endpoints (-1 and 1) in the computational domain, a Gauss-Lobatto 

integration ruleis applied.  The general Gaussian quadrature rule expressed as 
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for n points is transformed to its corresponding domain with the mapping t τ→ such that  
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Therefore, the cost function in Eq. (2.21) is transformed to a discretized form, 
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where 0 1 0 1ˆ ˆ( , ,... ), ( , ,... )N Nx x x x u u u u= =  and kw are the LGL weights given by 

 2

2 1: ; 0,1,..., .
( 1) [ ( )]k

N k

w k N
N N L t

= =
+

 (2.34) 

In addition to the discretization of the cost function, the mixed state-control path 

constraints and the end-point constraints can likewise be evaluated at the LGL node 

points to form a complete discretized representation of the OCP.   
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b.  Covector Mapping Principle and Costate Estimation 

Bridging from a theorem developed in Refs. [128] and [135], the Covector 

Mapping Principle (CMP) has become instrumental in the automation of verifying the 

necessary conditions for optimality.  It entails the application of the KKT theorem to the 

NLP problem such that the KKT multipliers of the solved NLP elegantly map to the 

discrete costates.  In other words, it can be shown that the Lagrange multipliers (duals) 

for the NLP problem map to the costate values at the discrete LGL points [128].  The 

Lagrange multipliers are numerically determined by collocating the costate differential 

equations at kt  along with the transversality conditions and the optimality condition to 

obtain a system of linear equations that can be solved for the Lagrange multipliers.  A 

thorough overview of the historical introduction of this principle is found in Ref. [136] 

with recent extensions to solving nonlinear optimal control problems [137].  In addition 

to the CMP providing a means to verify optimality conditions, it is also instrumental in 

establishing the convergence properties of PS methods.     

c. Convergence 
Convergence of discretization methods for optimal control is still a very 

active area of research and until recently, a more rigorous proof of PS-convergence has 

been unavailable.  A series of recent developments in the theoretical foundations for PS-

convergence are addressing people’s concern [138]-[140].  For example, Gong et al., 

exploits the normal form of feedback linearizable dynamics to modify the standard PS 

method (similar to dynamic inversion); thereby facilitating the proof of sufficient 

conditions for the existence and convergence of PS discretizations [141],[142].   

d. NLP Solver used for DIDO’s  PS Method 
SNOPT is a collection of Fortran 77 subroutines that uses the iterative 

SQP method to solve the NLP problem [103].  SQP is one the most widely used 

algorithms for solving general NLP problems.  It is a recursive program that uses 

Newton’s Method to directly solve the KKT conditions such that the sub-problem 

minimizes a quadratic approximation to the Lagrangian function that is optimized over a 

linear approximation of the constraints.  As such, this method is also referred to as the 

Lagrange-Newton, or projected Lagrangian approach [120].   
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e. Benefits of PS Method 

The primary benefits that this method provides over other methods are the 

following:  

1. discretization ideally reduces problem from large-scale to small-scale 

via sparsity structure; hence, providing high computational speed; 

2. when a solution exists, global convergence is guaranteed; 

3. CMP automatically provides dualization of problem variables; 

4. can solve non-smooth problems [143]; and 

5. “black-box” implementable using simplistic DIDO software package. 

Because of this method’s ability to provide real-time (or near real-time depending on the 

problem), open-loop optimal solutions, feedback control is possible as explained in the 

next section. 

2. PS-Feedback Method  

a. Overview 

The confluence of recent developments in optimal control theory, 

numerical methods and computational power has provided a turning point in the 

development of non-traditional, nonlinear feedback control laws.  Stemming from the 

underlying principles of sample and hold feedback control, a PS-feedback algorithm has 

been effectively implemented in recent years to solve various guidance, navigation, and 

control problems that include a non-Eulerian time-optimal spacecraft slew maneuver 

[144], nonlinear observer [145], stabilization through real-time control [146], optimal 

reentry guidance [147], and control of a classical inverted pendulum [146] to name just a 

few applications.  The proceeding section summarizes the recent theoretical foundations 

described in Ref. [148] to support the notion of real-time as facilitated by a key lemma 

that links the Lipschitz constant of the dynamics to the requirements of a sampling 

frequency for generating Carathéodory-π solutions. 

b. Carathéodory-π Solutions 

The solution to a general nonlinear system, ( , , )x f x u t= , with state and 

control spaces represented by ( ) ( )x t t∈ X and ( ) ( , ( ))u t t x t∈ U , respectively, that satisfies 
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certain “C1-Carathéodory” conditions supports the concept of using π -solutions to 

generate feedback maps [148].  The notion of π -solutions has to do with partitioning the 

time interval according to a piecewise series of open-loop control solutions such that 

when executed in sequence are equivalent to a closed-loop solution.  This is possible 

since any digital implementation of a closed-loop continuous-time system is 

fundamentally a series of discrete signals governed by the sampling frequency of that 

system.  Note that an important consideration for practical flight control is that the 

control space is state dependent [47].  In addition to generating feedback maps, this 

approach also requires the control trajectory satisfy an optimality criterion and that the 

initial and final states meet some specified endpoint conditions defined by the problem.   

To implement this sample-and-hold strategy, consider the following example, 

restated from Ref. [148].   

Example: Given an initial condition, 0x , a π -trajectory, ( )x ⋅ , corresponding to a time-

invariant feedback policy, ( )u k x= , is generated by the following:   

From 0t  to 1t , generate a solution to  

 0 0 0 0 1( ) ( ( ), ( )), ( ) , [ , ]x t f x t k x x t x t t t= = ∈  (2.35) 
 

Then, at 1t t= , set 1 1( )x x t=  and restart the system with 1( )u k x=  such that 

 1 1 1 1 2( ) ( ( ), ( )), ( ) , [ , ]x t f x t k x x t x t t t= = ∈  (2.36) 

and continue this process to form a set of piecewise open-loop solutions (i.e., a π -    

solution).   

This same procedure would work for a time-varying feedback law, ( , )u k x t= , but 

may be non-conducive for practical feedback control since it does not exploit the inherent 

element of prediction provided by the clock-time, t.  Therefore, instead of basing the 

sampling on past data (i.e., ‘backward-looking’ approach) it is better to base it on future 

data (i.e., ‘forward-looking’ approach) [148] such that the control is continuously updated 

by the clock information.  In this case, by imposing the Carathéodory conditions to the 

generation of all the segmented solutions, an optimal Carathéodory-π  trajectory results.   
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The following section provides an overview of the practical implementation to generating 

these Carathéodory-π  trajectories as well as the feedback-based computational time 

requirements.  

c. Practical Implementation and Computational Time 
Requirements 

Abandoning the notion of seeking analytical or closed-form expressions 

for feedback, ( )x k x , a PS-feedback method relies on an optimal feedback strategy 

that resorts to a computational algorithm manifesting a more fundamental control form. 

This method automatically generates a time-varying feedback law, ( , )u k x t= , in a semi-

discrete form.  As depicted in Figure 2.4, clock-time is used to generate open-loop 

“analog” signals, ( ) ( , ( ))iu t k t x t=  over a discrete state space as facilitated by discrete 

sensor measurements.   

 
 

Figure 2.4 Schematic for Generating a Semi-Discrete, Clock-Based  
Feedback Controller [148]. 

 

Consider a nonlinear model of a control system   

 0( , , , )x f x u t p=  (2.37)      

where 0
pNp ∈  is a constant representing the system parameters (e.g., mass, reference 

area, etc).  Now, let the real system (plant) dynamics be  

 ( , , , ) ( )x f x u t p d t= +  (2.38) 
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where p is the actual plant parameters and ( )d t  be some exogenous input function such 

that a perfect model results when 0 and 0
L

p p d ∞= = .  According to Figure 2.5, a 

feedback policy is implemented starting at it t=  with the computation of 

[ ]1, ( , ( ))i i R it t u k t x t+ = , where Rx is the state of the real system (plant).   

 
Figure 2.5 Practical Implementation for a Clock-Based Feedback Control. 

 

Under the action of an open-loop control, 1[ , ] ( , ( ))i i R it t k t x t+ , the state of the model at 

1it +  is given by, 

 
1

1 0( ) ( ) ( ( ), ( , ( )), ; )
i

i

t

M i R i M R i
t

x t x t f x t k t x t t p dt
+

+ = + ∫  (2.39) 

As seen in Figure 2.5, the control ( , ( ))R it k t x t  is available at 1it + for application to the 

plant.  Here, the computational time is 

 1:i i it tτ += −  (2.40) 

Thus, the state of the plant at 1it + is determined by the action of the control, 

1 1[ , ] ( , ( ))i i R it t k t x t+ − , and is given by, 
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1 1

1 1( ) ( ) ( ( ), ( , ( )), ; ) ( )
i i

i i

t t

R i R i R R i
t t

x t x t f x t k t x t t p dt d t dt
+ +

+ −= + +∫ ∫  (2.41) 

Therefore, the real trajectory Rx  differs from the ideal/model trajectory, Mx  due to the 

effects of the computational delay time as well as the deviations caused by disturbances, 

( )d t and uncertainties, p.  Subtracting (2.39) from  (2.41) gives, 

 

1

1 1

1 1 1

0

( ) ( ) ( ( ), ( , ( )), ; )

( ( ), ( , ( )), ; ) ( )

i

i

i i

i i

t

R i M i R R i
t

t t

M R i
t t

x t x t f x t k t x t t p dt

f x t k t x t t p dt d t dt

+

+ +

+ + −− =

− +

∫

∫ ∫
 (2.42) 

Now, assuming Lipschitz continuity, Eq. (2.42) can be re-written as   

 

1

1

1 1

1

0

( ) ( ) ( ) ( )

( , ( )) ( , ( ))

i

i

i

i

t

R i M i x R M
t

t

u R i R i
t

p i iL

x t x t Lipf x t x t dt

Lipf k t x t k t x t dt

Lipf p p dτ τ

+

+

∞

+ +

−

− ≤ −

+ −

+ − +

∫

∫  (2.43) 

 

Extending this result, Ross proves that the Lipschitz constant of a system is related to the 

required computational time by  

 ( )
i

x

W r
Lipf

τ ≤  (2.44) 

where ( )W r  is a multi-valued Lambert W function given by ( )( ) W xx W x e=  [148].  

Additional remarks regarding a Lemma and its proof for this relation can be found in 

[148]. 

The key for successful implementation of these feedback principles rely 

on a sufficiently fast generation of open-loop controls.  By generating open-loop controls 

as demanded by Eq. (2.44), closed loop is achieved by generating Carathéodory-π 

solutions [148].  In recent years, it has become quite apparent that PS methods 

[126],[149],[150] are capable of generating optimal open-loop controls within fractions 

of a second, [142],[151],[152] even when implemented in legacy hardware running 

MATLAB©.  This implies that real-time optimal controls can be generated for systems 
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with large Lipschitz constants; that is, systems with fast dynamics.  This simply follows 

by re-writing (2.44) as, 

 ( )
x

c

W rLipf
τ

≤  (2.45) 

where cτ  is the largest computational time.  Chapter IV provides results that demonstrate 

this concept for the reentry guidance of an RLV.   

As mentioned earlier, the software package DIDO, based on PS-methods, 

provides a means of computing optimal controls.  Requiring only the problem 

formulation as described by Eq. (2.21), DIDO is a “minimalist's approach” to solving 

optimal control problems. Also, by incorporating the CMP, it allows “dualization to 

commute with discretization”; hence, automatically verifying necessary optimality 

conditions [153].   

d. Algorithms for Trajectory Generation 
The PS-feedback implementation essentially consists of both off-line and 

on-line trajectory generation via DIDO as depicted by the control architecture shown in 

Figure 2.6.   The purpose of this architecture is to illustrate the overall system’s use of an 

off-line optimal trajectory solution (actually an on-line “start-up” run), successive on-line 

optimal trajectory solutions, and a Runge-Kutta propagation scheme to integrate the 

equations of motion in order to determine the current vehicle state vector (idealize the 

real vehicle’s navigation). 

 

DIDO Trajectory
Generation

(off-line, open-loop) DIDO Trajectory
Generation

(on-line, closed-loop)

Mission Objective
(cost & constraints)

* * * *
0 0( ), ( )u t x t

0
*
( )it t

u
≥

( ... ... )i i DIDO f
i

t t t t
x x x x

+
=

Mission Objective
(cost & constraints)

0
*
( )it t

u
≥

( ,... ),i DIDO f
i i

t t t
x x x t

+
=

Disturbance/
Errors

iu

ix

 
Figure 2.6 Control Architecture for Off-Line and On-Line Trajectory Generation.  
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Given initial conditions and desired final conditions, cost, and constraints (i.e., mission 

objectives), DIDO computes the first, open-loop optimal control.  This optimal solution 
* * * *( ( ), ( ))u t x t  is used as an initial guess to begin the closed-loop implementation.  The 

closed-loop optimal control is then solved on-line by using the open-loop solution as the 

start-up values to a new open-loop OCP.  As the next DIDO run is in progress, the 

previous control history is interpolated and used to propagate the equations of motion.  

Upon DIDO completion, the vehicle’s current state is provided from the propagation 

routine and a new optimal trajectory is computed using the same constraints as the start-

up problem.  Note that the numerical errors (e.g.,, propagation) in the computational 

algorithm, represented by “errors” in Figure 2.6, are associated with an imperfect model 

(i.e., plant uncertainties) and imperfect measurements (i.e., navigation/estimation errors).  

This successive process of solving the full OCP is illustrated in Figure 2.7.  CAUTION: 

The propagated segments are exaggerated for illustration purposes only and the complete 

open-loop trajectory beginning from each successive initial condition (IC) is not shown.   

Since the precision of real control systems is limited by the accuracy of the 

sensors/estimation, it is more practical to use epsilon balls, ( , )i
ix x ε∈B , in place of 

initial and final point-conditions, 0
0 and f

fx x x x= = , respectively.  The epsilon balls, 

indicated in Figure 2.7, are then dictated by the accuracy of the sensors/estimation or the 

precision requirement dictates the sensor selection.  Ideally, each initial condition will 

begin exactly at the final condition of the previous optimal trajectory segment.  This will 

capture the effects of Bellman’s Principle as described earlier.      
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prop2IC1 
(t0) IC3 (t2= t1+tDIDO)

prop1 

-balls 
prop3 prop4 

IC4 (t3= t2+tDIDO) 

FC (tf= t3+tDIDO) 

IC2  (t1= t0+tDIDO)

ε

 
Figure 2.7 Successive Optimization Concept. 

 

As alluded to earlier, one powerful application of Bellman’s Principle is to de-

alias a low-accuracy solution to provide a high-accuracy solution without creating a 

large-scale optimization problem.  Ross et al. makes the connection between the Nyquist-

Shannon sampling theorem and generic mesh refinement methods that require increasing 

the number of sampling points [122].  It is shown that a 15-node solution is an alias of the 

60-node solution.  In later chapters, this principle and the 2a B -algorithm are applied to a 

6-DOF reentry problem to both test and verify the accuracy of the solution.  For this 

reason, the 2a B -algorithm is restated here for completeness. 

2a B -algorithm: [122] 

1. Solve the problem for a low number of nodes, n. This generates a discrete-
time solution, { } 0

, n
i i i

x u
=

 corresponding to discrete times { } 0

n
i i

t
=

. 

2. Partition the time interval 0[ , ]nt t  into BN -Bellman segments, 

1
0 ... BN

nt t t t< < < = .  These segments need not be uniformly spaced. 

3. Propagate the differential equation from 0t to 1t  using 0x as the initial 

condition and any method of continuous-time reconstruction of the controls, 
1 1

0( ), [ , ]u t t t t∈  based on { } 0

n
i i

u
=

.  That is, solve the initial value problem,  

 1
0 0( , ( )), ( )x f x u t x t x= =  (2.46) 
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This step generates a continuous-time trajectory, 1 1
0( ), [ , ]x t t t t∈ .  This 

propagation is done numerically via some high-precision propagator, say the 

standard 4/5 Runge-Kutta method. 

4. Set 1 1
0 ( )x x t= and 1

0t t= and go to step 1; that is, set a new initial condition 

as the value of the integrated state at the end of the period, 1
0[ , ]t t and solve 

the problem again for n (which continues to be low).  This generates a new 

sequence { } 0
, n

i i i
x u

=
 corresponding to new discrete times { } 0

n
i i

t
=

, etc. 

5. The algorithm stops at the BN -th sequence when the final conditions are 

met.  The candidate optimal trajectory is given by the Bellman chain, 

{ }11 1 2 1 2
0 0( ), [ , ]; ( ), [ , ]; . . . ( ), [ , ] : ( ), [ , ]B B BN N N

B fx t t t t x t t t t x t t t t x t t t t−∈ ∈ ∈ = ∈

Similarly, the corresponding controls are given by, 

{ }11 1 2 1 2
0 0( ), [ , ]; ( ), [ , ]; . . . ( ), [ , ] : ( ), [ , ]B B BN N N

B fu t t t t u t t t t u t t t t u t t t t−∈ ∈ ∈ = ∈

 

To further illustrate the actual implementation logic in DIDO, the flowchart for the 

feedback algorithm is shown in Figure 2.8, adapted from Ref. [144].     
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Figure 2.8 Flowchart of Closed-Loop Control Algorithm [144]. 

 

e. Benefits of PS-Feedback Method 
With all said, the primary benefits that this method provides over 

traditional feedback methods are the following:  

1. no a priori knowledge of computational time is required, 

2. no gains are used; hence no gain-tuning required, 

3. no reference trajectory tracking since new optimal solutions are 

generated each sample time, and 

4. no disturbance rejection/cancellation in the traditional sense (discussed 

later); hence, the system may autonomously use disturbance(s) as a 

benefit towards accomplishing the final objective. 
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Of course, with any numerical method, there exists computational issues that generally 

lead to problems in the form of numerical errors. 

 

D. COMPUTATIONAL ISSUES  

1. Numerical Problem Solving 
Using numerical algorithms to solve complex, real-world problems is now the 

standard with the availability of significantly more powerful computers.  Although this 

capability is appealing, it poses potential pitfalls.  Primarily in the fact that numerical 

errors, if not identified and accounted for, can cause multiple problems to include 

numerical non-convergence and wrong results.  For example, Hull has indicated cases 

where numerical errors causes non-convergence when using NLP to solve a reentry 

trajectory optimization problem [59].  For this reason, it is important to understand 

potential error sources when performing numerical computations.   

2. Numerical Errors     
The problem is essentially a function that maps the data to a solution [124].  The 

errors associated with this mapping process are primarily a result of inexact data and 

algorithm errors.  As previously stated, using wrong data can cause errors in the true 

solution.  Also, a numerical method using an infinite precision algorithm introduces 

truncation, round-off, and floating-point errors. 

 

 
 

Figure 2.9 Numerical Problem Solving  [124]. 
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Most real problems are not solvable exactly.  In most cases, the solution requires 

further approximations and/or iterations such that the exact solution only exists in the 

limit as the iteration number approaches infinity.  In this situation, the use of computers 

makes the most sense.  To solve a real-world problem, usually the problem is represented 

by equations and data.  As indicated in Figure 2.9, equations require some form of 

approximating the physical world.  Also, the data, when available, is almost always 

wrong due to measurement errors, floating point conversions, previous complications, 

etc.  Ross eloquently sums this up by posing the following lemma which he calls the 

“Fundamental Law of Modeling” [154]. 

 

Lemma: [154] Almost all models are inexact; the only important issue is the degree of 

approximation.  

 
3. Exact vs. Approximate Problems and Solutions 
Unfortunately, there is rarely a clear distinction between approximately solving an 

exact problem and exactly solving an approximate problem.  The key is in modeling or 

approximating the real problem (i.e., physical world) as close to exact as possible with 

the underlying stipulation that no matter how exact the model is, it will never be perfect.  

Since numerous errors already exist in numerical solvers, these errors are compounded 

when using a poorly modeled problem formulation.   

Since high precision usually comes at a high cost, problem simplifications are 

almost always performed, especially in control theory.  So, the question becomes:  what 

degree of fidelity is appropriate? 

4. Model Fidelity 
Increasing the model fidelity of a problem usually implies that the order of the 

system will increase; hence, creating a large-scale OCP.  The concern about the size of a 

problem has spawned the phrase – “curse of dimensionality” [81].  Some claim that 

solutions to large-scale OCPs are not possible, or not fast enough for certain applications.  

For example, Mettler states that high-fidelity models are “computationally too complex to  
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be solved in real time” [155].  This may have been the case as little as 10 years ago, but 

since then, computational power and numerical methods have made significant 

improvements.  

Is size and/or complexity really a problem for modern optimization algorithms?  

Over the past few years, PS methods have proven to be capable of solving complex, 

large-scale problems including trajectory optimization of reentry vehicles [46],[54], 

[83],[84], launch vehicle ascent guidance [123], footprint generation for RLVs [86], 

multiple satellite formations [156], and real-time spacecraft slew maneuvers [157] to 

name a few.  Theoretically, it is also possible that size, can actually improve optimization 

performance.  For example, adding more constraints may reduce the feasible region for 

the problem solution; hence, reducing the search space for the optimizer.   

5. Problem Formulation 
The key to good problem formulation is constructing a well-posed problem.  

General requirements of a well-posed problem are that the solution (1) exists, (2) is 

unique, and (3) depends continuously on the data.  The requirement for uniqueness 

depends on the specific problem because even some well-posed problems may have non-

unique solutions, but the key is to make a problem numerically tractable which is 

sometimes difficult with non-unique solutions.  The third requirement has to do with the 

formulation being continuously differentiable such that the partial derivatives of the 

function with respect to each independent variable exist.  This implies that the value of 

the data is important as well.  For example, small changes in the data should produce only 

small changes in the solution for a well-posed problem.  If small changes in the data 

results in no solution or multiple solutions, then an alternate problem formulation should 

be considered.  

6. Scaling and Balancing   
As with all numerical algorithms, scaling is critical for optimum computational 

performance (i.e., accuracy, speed, etc).  It is especially so in optimal control problems as 

the trajectory variables can have substantially different magnitudes that when used in 

numerical computations, can adversely affect the solution.  Often the case, “poor scaling 

can make a good algorithm bad” [115].  Ross discusses some of the effects of scaling in 

Ref. [158].  Good numerical practice frequently involves scaling the state, control, and 
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time variables to a range between 0 and 1, or at least within the same order of magnitude.  

This helps prevent numerical imprecision that can lead to ill-conditioned matrices.   

Since the intent of scaling and balancing is to provide numerically tractable 

quantities in the algorithms to improve computational performance, the mathematical 

premise is to normalize the problem variables by use of scaling factors.  For example, to 

transform a dynamic system ( , , )x f x u t= to a scaled system ˆ ˆˆ ˆ( , , )x f x u t= , that is, 

 
ˆˆ ˆˆ ˆ( , , ) ( , , )ˆ

dx dxx f x u t x f x u t
dt dt

= = ⇒ = =  (2.47) 

First, scale the state variable(s), the control variable(s), and the time according to 

 ˆˆ ˆ, ,x u tx k x u k u t k t= = =  (2.48) 

where the scale factors ik  can be represented as 1/ , 1/ , 1/x u tk XU k UU k TU= = = with 

XU, UU, and TU some user defined units for the given quantities. 

Next, substitute the scaled quantities of Eq. (2.48) into Eq. (2.47), to produce a scaled and 

balanced dynamical equation,  

 
ˆˆ ˆ ˆ( ) ( , , ) , ,ˆ ( )

x x x x

t t t t x u t

d k x k k kdx dx x u tf x u t f
dt d k t k dt k k k k k

⎛ ⎞
= = = = ⎜ ⎟

⎝ ⎠
 (2.49) 

Therefore, for multiple states and controls, Eq. (2.47) is expanded to  
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 (2.50) 

where 1,..., and 1,...,x ui N j N= = .  With this result, the scale factors , , andx u tk k k  can be 

tuned to simultaneously satisfy the following general guidelines for a well-scaled 

problem: 

1. Scale the independent variables to within the same range, e.g., 
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1 2ˆ ˆ ˆ( , ,..., ) [0,1]nx x x ∈  

2. Scale the dependent functions to have the same order of magnitude,  

1 2 ˆˆ ˆ
~ ( ), ~ ( ), ... , ~ ( )ˆ ˆ ˆ

ndxdx dxO O O
dt dt dt

ε ε ε  

It has also been discovered that scaling the dependent functions such that the 

costates (i.e., Lagrange multipliers) are close to the same magnitude is important as well; 

therefore, 

3. Scale the Lagrange multipliers to have the same order of magnitude, 

1 2~ ( ), ~ ( ), ... , ~ ( )nO O Oλ ε λ ε λ ε  

A common way to normalize or scale problems is to design units based on the 

fundamental units of distance, mass, and time (i.e., canonical units) defined here as DU, 

MU, and TU, respectively.  Like Eq. (2.48), a scaled variable is formed by applying scale 

factors based on these fundamental units.  For example, time (t) and distance (x) can be 

scaled according to  

 ˆ ˆ;t xt x
TU DU

 (2.51) 

Likewise, velocity is distance divided by time so it can be scaled according to 

 ˆ
/

V VV
VelU DU TU

=  (2.52) 

Therefore, any variable can be written in terms of the fundamental units and scaled 

accordingly.  Note, however, that for problems involving more than one variable defined 

by distance units, where the relative range of each distance unit is significantly different, 

then each variable may require a different scale factor, DU.  For example, consider a 

reentry problem using Cartesian coordinates where the crossrange is only 500 ft and the 

downrange is 4,000,000 ft.  Obviously, it is more appropriate to scale each of these 

variables by different distance units.  This goes back to the general form given by Eq. 

(2.49), implying that each variable can have a unique scale factor.  For a reentry problem 

using spherical coordinates, this is not an issue since crossrange and downrange are in 

latitude and longitude units.  In this case, it is common practice to scale the geographical 
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position by degrees; altitude by the radius of the earth (or initial altitude) 0R ; velocity 

by 0 0g R  where 0g  is the gravitational acceleration; and time by 0 0/R g  [31].  

However, instead of using 0R or arbitrarily selecting the DU as done in Ref. [46],  it may 

be better in terms of normalization to base the selection of DU on the range of a given 

distance variable and a “shifting term” as recommended by Betts in Ref. [115].  That is, 

given a range on a variable, L Ux x x≤ ≤ , Eq. (2.48) becomes  

 ˆ xx k x s= +  (2.53) 

where  

 1 1;
2

U
x

U L U L

xk s
x x x x

= = −
− −

 (2.54) 

 

Although this procedure may be physically appealing, it may not be suitable for certain 

problems.  Therefore, as illustrated by an example in Ref. [159], care must be given as to 

how the scaling method is affecting the computations.   

Overall, scaling is problem dependent and as such, there are no set rules.  Not 

only are the expected values of certain variables important, but so is the problem 

formulation itself.  As implied by the previous example of coordinate system selection 

and demonstrated in the next chapter, careful selection of the state variables can simplify 

the scaling process.   

 
E. CONCLUDING REMARKS 

This section has provided a mathematical framework for the theoretical 

foundations of optimal control theory and the solution methodology applied in this 

research.  The following chapters will show how the theory and the method go hand-in-

hand in solving perhaps one of the most challenging aerospace control problems since the 

inception of the space era – the guidance and control for the atmospheric reentry of a 

reusable launch vehicle. 
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III. HIGH-FIDELITY MODELS FOR REUSABLE LAUNCH 
VEHICLES 

A. INTRODUCTION 
As stated in the motivation section of the introduction, model fidelity plays a key 

role in the accuracy of trajectory optimization solutions and consequently, has a direct 

influence on the vehicle’s safety.  This is especially true for complex vehicles such as the 

aging, soon to be retired, U.S. Space Shuttle and more modern RLV designs to include 

the X-33, X-34, X-37, X-40A, etc.  There will probably always be controversy over 

whether or not using low-order models is sufficient or not for most of the engineering 

design and analysis of aerospace systems, but the bottom line is that is depends on the 

application.  For the design and development of guidance and control (G&C) systems and 

methods, simplicity and robustness are indeed important.  Since most G&C methods are 

based on simplified models, it begs the question, why?  Why take unnecessary safety 

risks?  Is it the complexity and challenge of modeling a high-fidelity model?  Is it that no 

one knows how to solve the problem?  Is it a matter of efficiency?  Are the lower-fidelity 

models good enough?  Although this work does not intend to answer these questions, it 

does provide some references to examples of why using lower-fidelity models may not be 

suitable for RLV G&C, address some issues with model fidelity, and provide results from 

solving a complex reentry problem using a 3-DOF model and a 6-DOF model.   

The purpose of this chapter is three-fold.  First, this chapter provides an overview 

description of the system under study – the X-33 RLV.  Second, this chapter’s main goal 

is to develop a 6-DOF model of a RLV and its environment for use in the high-fidelity 

trajectory optimization simulations presented in Chapter VI.  This consists of developing 

the standard equations of motion (EoM) typically used in flight vehicle simulations and 

then a modified set of EoM more appropriate for trajectory optimization applications.  

Finally, a discussion of model fidelity with a homotopy path to modeling complex 

systems is presented. 
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B. DESCRIPTION OF THE SYSTEM UNDER STUDY 

1. X-33 Reusable Launch Vehicle 

a. Program 
The X-33 program, started in 1996, was Lockheed Martin’s advanced 

technology demonstrator for NASA’s “next-generation” space launch vehicle program 

[160].  At the time, NASA was interested in lowering space access costs and sought 

solutions involving Single-Stage-to-Orbit (SSTO) concepts and prototypes.  The X-33 

half-scale prototype was to demonstrate its cutting-edge technologies (e.g., aerospike 

engines, load-bearing composite cryogenic fuel tanks, advanced thermal protection 

systems, etc.) that would lead to the development of the full-scale VentureStar RLV.  The 

X-33 was expected to begin flight-test demonstrations in 1999 but, continued technology 

maturation problems led to program termination in 2001 [161].  Although the program 

was cancelled, NASA continued its Space Launch Initiative (SLI) with the 2nd Generation 

RLV Program starting from 2001 [162].  The following section summarizes the 

VentureStar’s intended mission and the X-33’s flight-test plan to provide a framework for 

the entry trajectory conditions used in this work.       

b. Mission 
The VentureStar was planned to take-off vertically, ascend to a Low Earth 

Orbit (LEO) carrying a small payload, perform minimal orbital activities, transition and 

enter the earth’s atmosphere, descend through various intermediate flight segments 

(similar to the Space Shuttle Orbiter), and then ultimately land at a designated site.  

Unlike the VentureStar, the X-33 was intended only as a technology demonstrator and as 

such was to only ascend to a suborbital altitude of approximately 250,000 ft.  Figure 3.1 

illustrates the various mission phases with their corresponding sensor and control effector 

details. 
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Figure 3.1 X-33 Flight Phases [163]. 

 

The mission profiles depicted in Figure 3.2, are representative of the three 

planned flight tests that were to originate at Edwards Air Force Base, CA.  The landing 

sites included Silurian Dry Lake Bed (CA), Michael Army Air Field (UT), and 

Malmstrom Air Force Base (MT) at approximately 100 mi, 450 mi, and 950 mi (statute) 

downrange from Edwards, respectively.    

 

 
Figure 3.2 X-33 Flight-Test Mission Profiles [161]. 
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Although this dissertation does not use actual orbital altitude as the initial 

altitude nor use reaction control system (RCS) for use in the upper-atmosphere where 

little to no dynamic pressure is available for effective aerosurfaces, the specific entry 

trajectory conditions were selected based on a combination of the X-33 flight-test mission 

profiles and those presented in Ref. [163].  Similar to Ref. [163], the entry conditions for 

this work assume a trajectory initiating from the International Space Station (ISS) with an 

orbital inclination of 51.6 deg with the final landing site as Kennedy Space Center (KSC), 

Florida.  Depending on the exact timing of entry interface, the trajectories may have a 

small or large crossrange component – indicated by heading.  In any case, the trajectories 

all approach KSC from the west descending over the Gulf of Mexico or south west over 

the Caribbean Sea.  More specific information regarding the endpoint conditions for the 

various trajectory optimization problems will be provided in their respective chapters and 

sections. 

c. Vehicle Characteristics 
The X-33 is a lifting-body design with a L/D ratio ranging from 

approximately 1.25 to 4 for a Mach range from 0.10 to 30, respectively.  Its gross lift-off 

weight and burn-out weight (after MECO) are approximately 280,000 lbs and 78,000 lbs, 

respectively.  The vehicle’s relative size compared to the full-scale VentureStar and the 

U.S. Space Shuttle is shown in Figure 3.3.   

 
Figure 3.3 Size Comparison of X-33, VentureStar, and U.S.  

Space Shuttle [161]. 

The configuration and approximate dimensions are shown in Figure 3.4. 
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Figure 3.4 X-33 Configuration and Dimensions. 

 

The X-33 has a unique control surface configuration.  As shown in Figure 

3.5, there is multiple redundancies provided by the in-board and out-board elevons, split 

body flaps, and dual rudders.  It is common for launch vehicles to have redundant 

actuators, but to have redundant aerosurfaces provides the unique capability of 

reconfigurable controls.  This allows compensation for changed aerodynamics and 

maintaining controllability as a result of control surface failures, vehicle degradation, 

aerodynamic uncertainties, etc.  Implications of control surface failures and safe flight are 

discussed in Ref. [46]      
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Figure 3.5    X-33 Redundant Aerosurface Configuration. 

 

With the aerosurface configuration shown in Figure 3.5, the control 

surface deflection vector, also know as the effector vector, is represented by  

 [ , , , , , , , ]
in out in outRE RE LE LE RF LF RR LRδ δ δ δ δ δ δ δ=δ  (3.1) 

where 
inREδ is the deflection position for the right elevon – inboard,  

outREδ  is for the right 

elevon – outboard, etc.  A more thorough description of this effector vector is described 

in the aerodynamic model section (Sec. D.d).  Additional vehicle parameters for the X-33 

models used in this work are given in Table 3.1. 
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Table 3.1 X-33 Vehicle Parameters 

Parameter Value Unit 

Empty Mass, m 2455 slugs 

Ref. Surface Area, refS  1608 2ft  

Ref. Aerodynamic Span, b 36.60 ft  

Ref. Aerodynamic Chord, c  63.20 ft  

Ref. Aspect Ratio, AR 0.86 - 

Ref. C.G. x-axis, xCG  42 ft  

Ref. C.G. y-axis, yCG  0 ft  

Ref. C.G. z-axis, zCG  0.67 ft  

Principal MOI x-axis, xxI  434270 2slugs ft−  

Principal MOI y-axis, yyI  961200 2slugs ft−  

Principal MOI z-axis, zzI  1131541 2slugs ft−  

Cross-Product MOI, xzI  17880 2slugs ft−  

 

2. Why the X-33? 
As stated previously, the X-33 program was cancelled; however, considerable 

progress was made and extensive aerodynamic testing generated a high fidelity 

aerodynamic database for the vehicle that is quite useful for studies such as this.  The 

selection of the vehicle to use for modeling and simulation is important for testing 

advanced G&C algorithms.  For preliminary research or design work, it is common to use 

a simplified, generic vehicle model.  However, for analyzing new G&C algorithms, it is 

essential that the vehicle model can adequately test the functionality of the proposed 

control techniques.  In doing such, it is also useful to have previous test data available for 
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feasibility studies.  With this said, the X-33 RLV design makes an excellent test model 

for advanced G&C methods.  Since the development of the X-33 was the forerunner for 

the 2nd generation RLV initiative in the early 90’s, there exists a large amount of 

performance data and experimental aerodynamic data generated from wind-tunnel tests, 

proto-type hardware testing, computational fluid dynamic simulations, etc.  In addition to 

the availability of data, the X-33’s multiple redundant control surfaces make it an ideal 

test-bed for studying failure scenarios. 

From a controls standpoint, the X-33 configuration has an added benefit for 

testing new methods.  With eight aerodynamic control surfaces, consisting of right and 

left in-board elevons, right and left out-board elevons, right and left body flaps, and right 

and left rudders (see Figure 3.5), along with a reaction control system for thrust 

controlled maneuvers at high altitudes, the X-33 provides an excellent test model for 

exploring and simulating various control methodologies, especially for off-nominal 

conditions.  Such conditions of interest are those that may require control reconfiguration, 

allocation, and adaptation such as the case of recovering from control surface failure(s), 

vehicle damage, or significant uncertainties and disturbances.  Obviously, due to the 

abundance of data and its unique design configuration, the X-33 has been used 

extensively for research studies.  These efforts have provided numerous reference 

trajectories that can be used for benchmark comparisons, etc. 

 

C. PRELIMINARY FLIGHT MECHANICS 

1. Reference Frames and Coordinate Systems 
Since this work deals with flight in the sensible atmosphere, the reference frames and 

coordinate systems do not include some of those associated with space flight.  However, 

there are various reference frames and coordinate systems available for modeling a 

RLV’s position (i.e., geo-spatial location), orientation, and motion.  Table 3.2 defines the 

various reference frames, classified into two primary systems: Earth system and body 

system, and the corresponding coordinate systems that define the Cartesian triad.  Note 

that an orthonormal transformation will change one coordinate system to another.   
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Table 3.2     Reference Frames and Coordinate System Matrix (Adapted from [26]) 
 Reference Frames Coordinate Systems 

Inertial (Geocentric-Inertial) IF -  Generic 
“fixed” frame, uniform rectilinear translation 
often relative to Earth’s cm 

ECI (Earth-centered inertial), origin at Earth’s cm, 
axes in equatorial plane and along spin axis 
 

Earth-Centered EF - “rigid” Earth 
ECEF (Earth-centered, Earth-fixed),  axes in 
equatorial plane and along spin axis 
 

Local-Tangent TF  - plane on Earth’s 
surface ⊥ line connecting Earth’s cm and 
vehicle’s cm 

Tangent-plane, origin on Earth’s surface 
 E

ar
th

 S
ys

te
m

 

Vehicle-Carried Vertical (Nav or Local 
Horizontal) VF or NF -translates with vehicle’s 
cm 

Origin at vehicle’s cm, fixed geographic directions 
(NED) 
 

Body-Fixed BF - “rigid” vehicle  
Origin at vehicle’s cm, x aligned with body nose, 
z ⊥ x (down), y ⊥ XZ (right)  
 

Atmosphere-Fixed AF - vehicle relative to 
local atmosphere 

Origin at vehicle’s cm, if atmosphere at rest  
A EF F=  

 

Velocity / Wind WF - relative wind Origin at vehicle’s cm, x aligned with V, z ⊥ x 
(down), y ⊥ XZ (right) -- , 0 &v w u V θ γ= ⇒ = =  B

od
y 

Sy
st

em
 

Stability SF - for steady, symmetric flight   
S WF F=  

Origin at vehicle’s cm, x aligned with proj(V) onto 
body XZ plane, z ⊥ x (down), y ⊥ XZ (right) 

 

An important reference frame is the body-fixed frame with a right-handed coordinate 

system originating at the vehicle’s center of mass (cm).   

xb
zb 

yb 

X

Z 

Y N, r
L, p

M, q 

u 
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v 

T=0

 
Figure 3.6 Body-Axis Coordinate System. 
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In accordance with Figure 3.6, the x-axis (longitudinal axis) extends the length of the 

body through the vehicle’s nose, the y-axis (lateral axis) extends out the right wing, and 

the z-axis (vertical axis) points down.  Table 3.3 defines the standard notation given by 

Figure 3.6 for the forces, moments, and velocities with respect to their corresponding 

body-axes. 

 

Table 3.3 Standard Definitions of Forces, Moments, and Velocity Components (Adapted 
from [100]) 

 Roll (x-axis) Pitch (y-axis) Yaw (z-axis) 

Angular Rates p q r 

Velocity Components u v w 

Aero. Force Components X Y Z 

Aero. Moment Components L M N 

MOI about each axis Ix Iy Iz 

Products of Inertia Iyz Ixz Ixy 

 

For velocity and wind-axes, the choice of using ( , , )u v w , ( , , )V ξ γ , or ( , , )V α β depends 

on the specific application and/or desired analysis.  Depending on the choice of an Earth 

Model, discussed in Sec. F.1, there is only one logical choice for the corresponding 

coordinate system.  For example, the following illustrates typical earth-model-coordinate 

system maps: 

  

1. Ellipsoidal-Earth Model  Geodetic Coordinates  

2. Spherical-Earth Model  Geocentric Coordinates  

3. Flat-Earth Model  Cartesian Coordinates  

Before presenting the equations of motion, the commonly used flight angles must be 

defined along with their strongly coupled, often ignored, relationships. 
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2. Aircraft Flight Angles 
Depending on the level of fidelity used in modeling flight vehicle motion, the 

defining angles may be represented as simple trigonometric relations such as for steady-

state analysis or more complex spherical trigonometric relations such as for maneuvering 

flight.  Reduced-order models and flight analysis often assume small angles such that 

some angles are considered insignificant and omitted from the development of the 

dynamic equations of motion.  For example, some research assumes roll angle and bank 

angle are equivalent which as shown later is only valid for a small angle-of-attack (AoA).  

This can be a dangerous assumption leading to incorrect results especially where accurate 

solutions are needed.  Another common assumption used in various research efforts are 

the following relationships between the “heading” angles ( , , )ξ ψ β  and the “pitch” angles 

( , , )γ θ α  

 ξ ψ β= +  (3.2) 
 γ θ α= −  (3.3) 
 
These relationships are geometrically shown in Figure 3.7(a) and Figure 3.7(b).   
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.7 Flight Angles: (a) Longitudinal Motion  (b) Directional Motion. 
 

As shown later, these relations are only valid for restricted maneuvers in which 

the vehicle remains in a “wings-level” orientation.  Even though Kalviste pointed out in 

1987 that these simple relations are being applied under conditions where they do not 

α θ 
γ 
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xb 
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0θ φ α= = =
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apply, it appears that these errors are still being made today [164].  For this reason and 

since it is important to consider the full, correct angle relationships when developing 

high-fidelity models for high-accuracy solutions, it is here that the full angle relations are 

re-developed.   

Traditionally, stability and control analysis uses Euler and aerodynamic angles 

where as point-mass trajectory analysis uses flight-path angles.  For trajectory 

optimization problems, it is beneficial to consider all angles since flight maneuverability 

is the primary factor driving such analysis.  For example, the main objective of the 

reentry problem is to determine the vehicle’s flight maneuvers (effected by control 

surface deflections) to get from one point (orbit or entry interface) to the other (landing).     

a. Flight Path Angles 

The flight path angles ( , , )ξ γ σ , geometrically shown in Figure 3.8, define 

the vehicle’s trajectory through space usually given by the velocity vector relative to 

some local reference plane such as the so called “local horizontal” in the direction of 

North.  In terms of a point-mass model, these angles characterize the translational motion 

of the vehicle.  Note that the following nomenclature definitions are from Ref. [164].   

ξ  - flight path heading angle (i.e., “heading angle”), horizontal angle 

between a reference direction, usually North, and the projection of the velocity vector 

onto the local horizontal plane; positive rotation is typically from North to East 

γ  - flight path elevation angle, (i.e., “flight path angle”), vertical angle 

between the velocity vector and the local horizontal plane; positive rotation is up 

σ  - flight path bank angle, (i.e., “bank angle”), angle between the plane 

formed by the velocity vector and the lift vector and the vertical plane in the local 

horizontal frame that contains the velocity vector; positive rotation is clockwise about the 

velocity vector  
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Figure 3.8 Flight Path Angles: (a) Elevation and Heading  (b) Bank. 

 
 

b. Aerodynamic Angles 

The aerodynamic angles ( , )α β  are primary independent variables from 

which aerodynamic coefficients are defined, i.e., ( , ,... .)xC etcα β .  They basically define 

the direction of the velocity vector with respect to the vehicle’s body-fixed axes.  These 

angles are geometrically shown in Figure 3.9 and depend on the projection of the velocity 

vector onto the body x-z plane.  Like the Euler angles as discussed next, the aerodynamic 

angles relate the body-frame with the wind-frame by a sequence of rotations.  Note that 

the following nomenclature definitions are from Ref. [164].   

α - angle-of-attack, angle between the body x-axis and the projection of 

the velocity vector onto the body x-z plane; positive rotation from z-axis towards x-axis   

β  - sideslip angle, angle between the velocity vector and the body x-z 

plane in body-axis coordinates; positive to the right of x-z plane 

 

 

 

 

(a) (b) 

ξψ

γ
θ

Local 
Ref. 
(North)

Local 
Ref. 
(Down)

xB V

Local 
Horizontal 
Plane

zB

CG

yB

D

xB
V

zB

yB

L
σ

Plane Formed 

by Velocity & 

Lift Vectors
Vertical 
Plane

Local 
Ref. 
(North)

Local 
Horizontal 
Plane

Local 
Ref. 
(Down)



82 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.9 Aerodynamic Angles: (a) AoA and Sideslip Angle  (b) Enlarged View from 
Opposite Side. 

 
c. Attitude Angles 

The attitude angles, usually given by the common Euler angles ( , , )ψ θ φ  

geometrically illustrated in Figure 3.10, represent the vehicle’s attitude orientation and 

characterize its rotational motion.  In flight dynamics, this rotation is typically measured 

with respect to a vehicle-carried local horizontal frame and some other relevant reference 

system, in most cases the body-fixed system.  Note that the following nomenclature 

definitions are from Ref. [164].  

ψ  - vehicle heading angle, (i.e., “yaw angle”), horizontal angle between 

reference direction, usually North, and the projection of the vehicle x-axis onto the local 

horizontal plane; positive rotation typically from North to East 

θ  - vehicle pitch angle, (i.e., “pitch angle”), vertical angle between 

vehicle x-axis and local horizontal plane; positive rotation is up   

φ  - vehicle roll angle, (i.e., “roll angle”), angle between vehicle x-z plane 

and local vertical plane; positive rotation is up  
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Figure 3.10 Euler Angles: (a) Pitch and Yaw  (b) Roll. 
 
 

d. Angular Relationships 
For large-angle maneuvers, all the flight angles are needed to accurately 

define the vehicle’s translational and rotational dynamics.  There are essentially two 

approaches to deriving these angular relationships.  The first approach consists of using 

trigonometry based on the physical geometry of the flight angles.  This is done by 

projecting the angles onto a unit sphere as illustrated in Figure 3.8 to Figure 3.10 and then 

using spherical trigonometry (i.e., applying the laws of sine and cosine to spherical 

triangles) to derive their relationships.  However, it is possible to achieve similar, but 

equally valid, relations without having to visualize these complex spherical geometries by 

performing a series of transformations between each of the coordinate systems via 

transformation matrix (TM) multiplications.  This approach results in a Direction Cosine 

Matrix (DCM) and when set equal to the identity matrix it can provide equations that 

relate the various flight angles.  The following discussion illustrates this second approach.      

Inertial to Body-Fixed Frame TM ( )V BF F→   

Consider the following Euler-angle rotation matrices,  
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cos sin 0 cos 0 sin 1 0 0
sin cos 0 ; 0 1 0 ; 0 cos sin
0 0 1 sin 0 cos 0 sin cos

ψ θ φ

ψ ψ θ θ
ψ ψ φ φ

θ θ φ φ

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

R R R (3.4) 

The transformation from the inertial to the body-fixed reference frame (where the inertial 

frame, VF , is taken as the vehicle-carried local horizontal) is achieved from the following 

matrix multiplication, 

 

 
[ ]

cos cos cos sin sin
sin sin cos cos sin sin sin sin cos cos sin cos
cos sin cos sin sin cos sin sin sin cos cos cos

B
V

BVT

φ θ ψ

θ ψ θ ψ θ
φ θ ψ φ ψ φ θ ψ φ ψ φ θ
φ θ ψ φ ψ φ θ ψ φ ψ φ θ

=

−⎡ ⎤
⎢ ⎥⇒ = − +⎢ ⎥
⎢ ⎥+ −⎣ ⎦

R R R R

 (3.5) 

Inertial to Wind-Frame TM ( )V WF F→  

Similarly, consider the following flight-path-angle rotation matrices, 

 

 
cos sin 0 cos 0 sin 1 0 0
sin cos 0 ; 0 1 0 ; 0 cos sin
0 0 1 sin 0 cos 0 sin cos

ξ γ σ

ξ ξ γ γ
ξ ξ σ σ

γ γ σ σ

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

R R R (3.6) 

 

The transformation from the inertial to the wind reference frame is achieved from the 

following matrix multiplication, 

 
[ ]

cos cos cos sin sin
sin sin cos cos sin sin sin sin cos cos sin cos
cos sin cos sin sin cos sin sin sin cos cos cos

W
V

WVT

σ γ ξ

γ ξ γ ξ γ
σ γ ξ σ ξ σ γ ξ σ ξ σ γ
σ γ ξ σ ξ σ γ ξ σ ξ σ γ

=

−⎡ ⎤
⎢ ⎥⇒ = − +⎢ ⎥
⎢ ⎥+ −⎣ ⎦

R R R R

 (3.7) 

Wind to Body-Frame TM ( )W BF F→  

Likewise, consider the following aero-angle rotation matrices, 

 
cos sin 0 cos 0 sin
sin cos 0 ; 0 1 0

0 0 1 sin 0 cos
β α

β β α α
β β

α α

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

R R  (3.8) 
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The transformation from the wind frame to the body-fixed reference frame is achieved 

from the following matrix multiplication, 

 [ ]
cos cos cos sin sin

sin cos 0
sin cos sin sin cos

BWB
W Tα β

α β α β α
β β

α β α β α

− −⎡ ⎤
⎢ ⎥= ⇒ = ⎢ ⎥
⎢ ⎥−⎣ ⎦

R R R  (3.9) 

Now, the combination of these rotation sequences leads to a DCM that satisfies  

 [ ] [ ] [ ]3 3b bF DCM F
×

=  (3.10) 

where the DCM obviously must represent an identity matrix.  This DCM is formed by 

multiplying the previous TMs 

 [ ] [ ] [ ] [ ] [ ] T TBB BV VW WB BV VW WBT T T T T T T⎡ ⎤ ⎡ ⎤= ⇒ ⎣ ⎦ ⎣ ⎦  (3.11) 

such that 

 [ ] [ ] [ ] [ ]3 3

b11 b12 b13 1 0 0
b21 b22 b23 0 1 0
b31 b32 b33 0 0 1

BV VW WBDCM T T T
×

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (3.12) 

This DCM relates all the flight angles and therefore any of the DCM elements can be 

used to solve for a desired angle.  For example, isolating the sideslip angle term in the 

element b11 yields the following relation 

 

tan (cos cos sin sin cos cos cos sin cos cos sin sin cos
cos sin cos sin sin sin cos cos ) / (cos cos cos cos cos
cos cos sin cos sin cos sin sin sin cos cos cos sin
sin cos cos sin sin cos s

α θ ψ σ ξ θ ψ σ γ ξ θ ψ σ ξ
θ ψ σ γ ξ θ σ γ β θ ψ γ ξ
β θ ψ γ ξ β θ γ β θ ψ σ ξ
β θ ψ σ γ ξ

− = + −
+ −
+ + +
− − in cos sin cos cos

sin cos sin sin sin sin sin sin sin cos )
β θ ψ σ ξ

β θ ψ σ γ ξ β θ σ γ− +

(3.13) 

 
tan  = ( cos cos cos sin cos cos sin sin cos cos sin cos cos

cos sin sin sin sin sin sin cos ) / (cos cos cos cos
cos sin cos sin sin sin )

β θ ψ σ ξ θ ψ σ γ ξ θ ψ σ ξ
θ ψ σ γ ξ θ σ γ θ ψ γ ξ
θ ψ γ ξ θ γ

− − + +
+ −
+ +

 (3.14) 

Although there is no obvious simplification of these equations, even with the aid of 

symbolic math tools like MAPLE, comparing them to relations derived from angles 

projected onto a unit sphere and applying spherical trigonometry reveals that Eqs. (3.13)

and (3.14) are indeed valid. 



86 

Kalviste uses spherical trigonometry to derive the angles such that they are 

functions of each other [164]. 

 
( , , ) ( , , , , )
( , , ) ( , , , , )
( , ) ( , , , , )

f
f

f

γ ξ σ α β ψ θ φ
ψ θ φ α β γ ξ σ
α β ψ θ φ γ ξ

=
=

=
 (3.15) 

To verify the relations from the derived DCM (3.12), a comparison is made with the 

following Kalviste relations,  

 
[ ]sin cos sin sin cos( ) cos sin( )

sin cos sin
β γ θ φ ξ ψ φ ξ ψ

γ θ φ
= − + −

−
 (3.16) 

 
[ ]sin cos cos sin cos cos( ) sin sin( )

sin cos cos
α β γ θ φ ξ ψ φ ξ ψ

γ θ φ
= − − −

−
 (3.17) 

                                            -or- 
 [ ]cos cos cos cos cos( ) sin sinα β γ θ ξ ψ γ θ= − +  (3.18) 

Given , , , andγ θ ξ ψ , identities from Eq. (3.12) provide the identical α and β solutions 

as those from Eqs. (3.16) -(3.18).  

In addition, it is now possible to confirm the over-simplified relations 

given by Eqs. (3.2) and (3.3) from the full flight-angle relationships, Eqs. (3.11) and 

(3.12).  Assuming wings-level flight and zero sideslip, 0φ σ β= = = , and 

simultaneously solving Eq. (3.12), results in the limited relation for longitudinal motion 

in the vertical plane only, 

 

1 sin cos cos sintan
cos cos sin sin

sin( )tan tan( )
cos( )

α γ α γθ
α γ α γ

α γθ α γ
α γ

θ α γ

γ θ α

− ⎛ ⎞+
= ⎜ ⎟−⎝ ⎠

+
⇒ = = +

+

⇒ = +

⇒ = −

 (3.19) 

Likewise, assuming 0θ φ σ α= = = = , and simultaneously solving Eq. (3.12), results in 

the limited relation for directional motion in the horizontal plane only, 
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( )1sin sin cos cos sin

sin sin( )

( )

β ψ ξ ψ ξ

β ψ ξ

β ψ ξ

ξ ψ β

−= − −

⇒ = − −

⇒ = − −

⇒ = +

 (3.20) 

Another important clarification about the flight angle relationships has to do with rolling 

and banking.  Kalviste concludes in perhaps the most complete document of the 

interrelationships among the angles, besides his Northrop Corp. report [165], that an 

aircraft does not roll about the velocity vector (stability x-axis) for coordinated 

maneuvers (zero side-slip), but rather an “axis of rotation” of the velocity vector [164].  

This is due to the velocity vector changing directions in large-angle roll maneuvers.  This 

is important because it is often assumed that roll angle and bank angle are the same.  In 

fact, only during constant AoA and constant sideslip angles (i.e., constant velocity vector) 

is this true.   

 

D. FULL-ORDER DYNAMICAL MODEL (6-DOF) 

1. Standard Flight Vehicle Equations of Motion 
The EoM of an aerospace vehicle are derived from rigid body dynamics that are 

based on Newton’s second law.  This section provides a rudimentary derivation of the 

standard EoM primarily used in flight vehicle applications.  The definitions and equations 

presented herein are primarily adapted from Etkin’s textbooks on flight dynamics, Refs.  

[99] and [166].  Additional details can be found in Refs. [98]-[100] and [166]-[168].  The 

following sections provide a brief introduction to a flight vehicle’s position, velocity, 

acceleration, attitude, forces and moments, and how they come together to form position, 

velocity, body-rate, and Euler-angle equations. 

a. Position, Velocity, and Acceleration 
The position of the vehicle’s center of gravity is typically with respect to 

some inertial frame of reference.  For air vehicles in general, there are primary two 

coordinate systems used for modeling and simulation: earth-centered or local-tangent.  

For models using a spherical earth, spherical coordinates based on an earth-centered 
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reference frame make the most sense.  In this case, the vehicle’s position is measured 

with respect to its distance from the center of the earth and its position over the earth’s 

geographical latitude and longitude.  For models that assume a flat-earth or are using a 

local tangent coordinate system, the position is measured in Cartesian x-y-z coordinates 

with respect to an arbitrary point over the earth’s surface.  For example, the x-distance 

would be a downrange distance corresponding to a geographical direction (e.g., East), the 

y-distance would be a crossrange distance corresponding to a geographical direction that 

is perpendicular to the x-distance (e.g., North), and the z-distance would be the altitude 

above the earth’s surface.  CAUTION: As shown in Figure 3.11, the body-fixed z-

direction points down; however, altitude is measured up from the earth’s surface; hence, 

in the negative z-direction.  

The translation of the vehicle’s position (cg) with respect to time is 

defined by the kinematical EoM.  The following equations for the positional kinematics 

are given in spherical polar coordinates with respect to the vehicle-carried frame VF  

(relative to Earth) 

 1
cos

1

D

E

N

R v

v
R

v
R

μ
λ

λ

= −

=

=

 (3.21) 

where ER R h= + is the geocentric radius, μ  is the geocentric latitude, and λ  is the 

geocentric longitude.  Assuming zero winds ( 0)W = , the velocity components in the 

vehicle-carried frame can be written as 

 
cos cos
cos sin

sin

N

E

D

v V
v V
v V

γ ξ
γ ξ
γ

=
=
= −

 (3.22) 

where V is the velocity of the vehicle’s cg relative to Earth since 

( )E A E AV V W V V V= + ⇒ = ≡ , ξ  is heading angle (measured positive clock-wise from 

the North), and γ is flight path angle (measured from the local horizontal).  Note that the 

subscripts N, E, and D indicate that the reference frame’s x,y,z-axes are aligned with the 
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geographical North, East, Down directions.  Substituting Eq. (3.22)  into Eq. (3.21) yields 

the following spherical kinematical equations 

 

sin

cos sin
cos

cos cos

R V
V

R
V
R

γ

μ γ ξ
λ

λ γ ξ

=

=

=

 (3.23) 

For motion over a relatively small area of the Earth’s surface, the Earth 

can be considered “locally flat” such that the vehicle-carried frame (“local horizontal”) is 

parallel to the Earth-fixed frame, V EF F  and x EV x→ .  This simplifies the kinematics to 

a Cartesian x,y,z-representation 

 
cos cos
cos sin
sin

E

E

E

x V
y V
z V

γ ξ
γ ξ
γ

=
=
= −

 (3.24) 

An alternative system of equations is expressed with velocity components in the body-

fixed frame, [ , , ]T
b b b bV u v w= , 

 [ ]cos
b

BV
b

b

R u
R v

R w

λ
μ λ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦

T  (3.25) 

where the linear velocity components, as shown in  Figure 3.6 and Figure 3.11, are  

 
cos cos
sin
sin cos

B

B

B

u V
v V
w V

α β
β
α β

=
=
=

 (3.26) 

and [ ]BVT is the transformation matrix from the inertial earth-fixed frame to the body-

fixed frame ( )V BF F→  given as 

 [ ]
cos cos cos sin sin

sin sin cos cos sin sin sin sin cos cos sin cos
cos sin cos sin sin cos sin sin sin cos cos cos

BV
θ ψ θ ψ θ

φ θ ψ φ ψ φ θ ψ φ ψ φ θ
φ θ ψ φ ψ φ θ ψ φ ψ φ θ

−⎡ ⎤
⎢ ⎥= − +⎢ ⎥
⎢ ⎥+ −⎣ ⎦

T (3.27) 

 

Substituting the appropriate equations into Eq. (3.25) and comparing to the kinematics in 

Eq. (3.24) results in 
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 cos
E

E

E

r x
r y

r z

λ
μ λ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦

 (3.28)  

Or, it is more common to find the right-hand-side (RHS) of Eq. (3.25) expanded to form 

the position equations, such that 

   

 

(cos cos ) (sin sin cos cos sin )
(cos sin cos sin sin )

(cos sin ) (sin sin sin cos cos )
(cos sin sin sin cos )

( sin ) (sin cos ) (cos cos )

E

E

E

x u v
w

y u v
w

z u v w

θ ψ φ θ ψ φ ψ
φ θ ψ φ ψ

θ ψ φ θ ψ φ ψ
φ θ ψ φ ψ

θ φ θ φ θ

= + −
+ +

= + +
+ −

= − + +

 (3.29) 

Note that in the presence of wind, described by the wind vector [ , , ]T
x y zW W W W=  the 

velocity terms can be written as  

 
B x

B y

B z

u u W
v v W

w w W

= +
= +

= +

 (3.30) 

CAUTION: All the following velocity terms assume zero wind (i.e., 0W = ) such that 

Bu u= .  If using spherical velocity terms, the linear velocities in Eq. (3.26) can be 

substituted into Eq. (3.29) to give 

 

cos cos (cos cos ) sin (sin sin cos cos sin )
sin cos (cos sin cos sin sin )

cos cos (cos sin ) sin (sin sin sin cos cos )
sin cos (cos sin sin sin cos )

cos cos ( sin ) sin (sin

E

E

E

x V V
V

y V V
V

z V V

α β θ ψ β φ θ ψ φ ψ
α β φ θ ψ φ ψ

α β θ ψ β φ θ ψ φ ψ
α β φ θ ψ φ ψ

α β θ β

= + −
+ +

= + +
+ −

= − + cos ) sin cos (cos cos )Vφ θ α β φ θ+

(3.31) 

 

The , ,E E Ex y z -equations are resolved in the body-axes frame ( )BF , but when in the 

wind-axes frame ( )BF , the x-axis is aligned with velocity vector, V  such that 
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0, , , andv w u V θ γ ψ ξ= = = = = .  Substituting these into Eq. (3.29) gives Eq. 

(3.24). 

V

w
u 

CG

yb 

zb 

xb 

v 

φ

σ

 
Figure 3.11 Velocity Components as Projections of Velocity Vector 

 

It is clear from Figure 3.11 that the linear velocity terms introduced in Eq. 

(3.26) are simply projections of the total airspeed, V.  Therefore, this speed is defined as 

the velocity magnitude given by  

 2 2 2V u v w= + +  (3.32) 

In addition, the aerodynamic wind-relative angles, α and β , are determined from the 

linear velocity terms  

 1tan w
u

α − ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (3.33) 

 1 1tan sinu v
V V

β − −⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (3.34) 

Instead of using Cartesian velocity vector components ( , , )u v w  without wind, using the 

spherical velocity terms ( ), ,V α β  makes the problem physically intuitive and easier to 

visualize the appropriate constraints.  This has little, if any, numerical effects since these 

coordinate systems are directly related by Eqs. (3.32)-(3.34).  Now, the velocity 

equations are found from directly differentiating Eqs. (3.32), (3.33), and (3.34) to get 

 1 ( )V uu vv ww
V

= + +  (3.35) 
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 2 2

uw wu
u w

α −
=

+
 (3.36) 

 
2 2 21 /
Vv vV

V v V
β −

=
−

 (3.37) 

respectively.  Also, since these equations will be applied to a gliding reentry problem 

(a.k.a. “dead-stick”), the thrust terms are omitted.  If thrust was available, the following 

terms could be added such that 

 ........ cos cosTV
m

α β⎡ ⎤= + ⎢ ⎥⎣ ⎦
 (3.38) 

 sin........
cos

T
mV

αα
β

⎡ ⎤
= − ⎢ ⎥

⎣ ⎦
 (3.39) 

 sin cos........ T
mV
β αβ ⎡ ⎤= + ⎢ ⎥⎣ ⎦

 (3.40) 

Likewise, if using the vehicle-carried reference frame, the velocity magnitude is 

represented by the components given in Eq. (3.22),  

 2 2 2
N E DV v v v= + +  (3.41) 

with the velocity-relative angles, γ  and ξ , determined as 

 1sin Dv
V

γ − −⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (3.42) 

 ( ) ( )1 2 2 1 2 2cos / sin /N N E E N Ev v v v v vξ − −= + = +  (3.43) 

Now that position, velocity, and acceleration are defined, the next section introduces the 

forces and moments required to formulate the complete translational EoM and introduce 

the rotational EoM.  For example, the current form of Eqs. (3.35)-(3.37) need to be 

modified to include force terms. 

b. Forces and Moments 

The total force generated on a vehicle during atmospheric flight primarily 

consists of contributions from aerodynamics, gravity, and propulsion (a.k.a thrust) 

represented as  

 total aero grav propF F F F= + +  (3.44) 
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Assuming there is no wind contribution in the linear velocity terms (i.e., 0W = ), the 

aerodynamic forces along the corresponding body-axes ( , ,B B Bx y z ) and that depend on 

the current flight condition are represented as 

 
( )

( )

( )

x aero ref x

y aero ref y

z aero ref z

F X qS C

F Y qS C

F Z qS C

= =

= =

= =

 (3.45) 

where q is the dynamic pressure given as 21 ( )
2

q z Vρ= , refS is the reference area, and 

, ,X Y ZC C C are the corresponding aerodynamic coefficients that are functions of various 

variables depending on the coefficient of interest as discussed later.  The local gravity 

terms for each axis are given by 

 
sin

sin cos

cos cos

x

y

z

g g
g g

g g

θ
φ θ

φ θ

= −
=

=

 (3.46) 

such that the forces due to gravity are 

 
( )

( )

( )

sin

sin cos

cos cos

x grav x

y grav y

z grav z

F mg mg

F mg mg

F mg mg

θ

φ θ

φ θ

= = −

= =

= =

 (3.47) 

Omitting the propulsion terms (un-powered reentry) and combining Eqs. (3.45)-(3.47), 

the external forces are written as 

 
x x

y y

z z

F X mg
F Y mg

F Z mg

= +

= +

= +

 (3.48) 

Also, the external force can be represented as the time derivative of linear momentum 

 ( ) ( ) ( )d mV mVF mV
dt t

δ ω
δ

= ⇒ + ×  (3.49) 

where [ , , ]Tp q rω = is the angular velocity vector and [ , , ]TV u v w=  is the velocity vector.  

Note that the angular velocity consists of the local body-frame velocity and the Earth’s 

velocity relative to the vehicle.  For the reentry problem, it is assumed that mass is 

constant since there is usually no fuel available for propulsion.  Hence, the forces become    
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[ ( ) ( ) ]
[ ( ) ( ) ]

[ ( ) ( ) ]

x E E

y E E

z E E

F m u q q w r r v
F m v r r u p p w

F m w p p v q q w

= + + − +
= + + − +

= + + − +

 (3.50) 

For the flat-earth approximation or assuming negligible earth rotation, 

[ , , ] 0T
E E E Ep q rω = = ; hence, Eq. (3.50) reduces to 

 
( )
( )

( )

x

y

z

F m u qw rv
F m v ru pw

F m w pv qw

= + −
= + −

= + −

 (3.51) 

Equating Eqs. (3.51) with (3.48) yields  

 
( sin )
( cos sin )
( cos cos )

X m u qw rv g
Y m v ru pw g
Z m w pv qu g

θ
θ φ
θ φ

= + − +
= + − −
= + − −

 (3.52) 

Equation (3.52) constitutes the body-axes, force equations for a vehicle assuming a flat-

earth with no wind.  The velocity equations given by Eqs. (3.35)-(3.37) can now be 

converted to a more useful form by solving for ( , , )u v w  in Eq. (3.52), 

 

sin

cos sin

cos cos

Xu g rv qw
m
Yv g ru pw
m
Zw g qu pv
m

θ

θ φ

θ φ

= + + −

= − − +

= − + −

 (3.53) 

and substituting these into Eqs. (3.35)-(3.37) yields 

 

[ ] [ ]

[ ]

[ ] [ ]

sin cos cos sin cos sin

cos cos sin cos

1 cos sin cos cos cos sin sin
cos cos

tan cos sin

cos sinsin cos sin cos sin cos

sin

X YV g g
m m

Z g
m

gZ X
mV V

q p r

Y mg p r Z X
mV mV

g
V

θ α β φ θ β

φ θ α β

α α α φ θ α θ α
β β

β α α

β ββ φ θ α α α α

β

⎡ ⎤ ⎡ ⎤= − + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤+ +⎢ ⎥⎣ ⎦

= − + +

+ − +

= + + − − +

− [ ]cos cos sin sin cosφ θ α θ α−

 (3.54) 
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where the aerodynamic forces and moments are  

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2

2

2

2

2

2

1 , , , Axial Force
2
1 , , Side Force
2
1 , , , Normal Force
2
1 , , Rolling Moment
2
1 , , , Pitching Moment
2
1 , , Yawing Moment
2

ref X

ref Y

ref Z

ref l

ref m

ref n

X z V S C M

Y z V S C M

Z z V S C M

L z V S bC M

M z V S cC M

N z V S bC M

ρ α β δ

ρ β δ

ρ α β δ

ρ β δ

ρ α β δ

ρ β δ

=

=

=

=

=

=

 (3.55) 

Equation (3.54) combined with Eq. (3.55) constitutes the body-axes, velocity equations 

for a vehicle assuming a flat-earth with no wind.  NOTE: The aerodynamic coefficients 

( , , , , , )X Y Z l m nC C C C C C are further explained in subsection d to follow. 

Since most aerospace vehicles are not extremely long with irregular mass 

distributions, it is assumed that the gravity field has negligible effects on the moments.  

Therefore, the external moments acting on the vehicle are primarily caused by 

aerodynamic forces and can be represented as 

 
( )

( )

( )

x aero ref l

y aero ref m

z aero ref n

M L qS bC

M M qS cC

M N qS bC

= =

= =

= =

 (3.56) 

Also, the moments on the vehicle can be represented as the time derivative of angular 

momentum 

 

 ( ) ( )d h hM h
dt t

δ ω
δ

= ⇒ + ×  (3.57) 

where h is the “moment of momentum” and depends on the vehicle’s moment of inertia 

matrix such that 

 
xx xy xz

yx yy yz

zx zy zz

I I I p
h I I I I q

I I I r
ω

⎡ ⎤− − ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − ⎣ ⎦⎣ ⎦

 (3.58) 



96 

Assuming an xz-plane of symmetry, as for most flight vehicles, the moments are given as 

 2 2

( ) ( )

( ) ( )

( ) ( )

xx xz zz yy

yy xz xx zz

zz xz yy xx

L I p I r pq I I qr

M I q I p r I I rp

N I r I p qr I I pq

= − + + −

= + − + −

= − − + −

 (3.59) 

Note that this can further be simplified if the axes are principal, i.e., 0xzI = .  Solving Eq. 

(3.59) for the angular accelerations yields, 

 

( ) ( )

( ) ( )

( ) ( )

2 2

2 2

2 2

1

xzzz
zz yy xz xx yy xz

xx zz xz xx zz xz

xx zz xz
yy

xz x
yy zz xz xx yy xz

xx zz xz xx zz xz

IIp L I I qr I qp N I I qp I qr
I I I I I I

q M I I pr I p r
I

I Ir L I I qr I qp N I I qp I qr
I I I I I I

⎡ ⎤ ⎡ ⎤= − − + + + − −⎣ ⎦ ⎣ ⎦− −

⎡ ⎤= − − − −⎣ ⎦

⎡ ⎤ ⎡ ⎤= + − + + + − −⎣ ⎦ ⎣ ⎦− −

(3.60) 

 

Equation (3.60) constitutes the body-axes moment equations for a vehicle assuming a 

flat-earth with no wind.   

c. Attitude Orientation 
The vehicle’s orientation in terms of body attitude can be described by 

Euler angles, Direction Cosines, or quaternions.   

(1) Euler Angles.  Euler angles, as defined in Sec. C.2.c, are 

generated by a series of rotations about each independent axis.  Repeating Eq. (3.4) here 

for consistency, the individual rotation matrices are given by  

 
cos sin 0 cos 0 sin 1 0 0
sin cos 0 ; 0 1 0 ; 0 cos sin
0 0 1 sin 0 cos 0 sin cos

ψ θ φ

ψ ψ θ θ
ψ ψ φ φ

θ θ φ φ

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

R R R (3.61) 

Note that Euler angles are not uniquely defined since the sequence of rotations changes 

the resulting transformation matrix.  These Euler-rotation matrices are used to express the 

angular velocities about the body axes.  Since the coordinate system for the Euler angle 

rates is not orthogonal, each rate must be transformed to the aircraft’s corresponding 

body axis by another rotation.  This series of transformations can be succinctly written as 
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0 0
0 0

0 0
b

p
q
r

φ θ ψ φ θ φ

φ
ω θ

ψ

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = + + ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

R R R R R R  (3.62) 

 
1 0 sin
0 cos sin cos
0 sin cos cos

p
q
r

φ φ
φ φ θ θ
φ φ θ ψ

⎡ ⎤−⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥⇒ = ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (3.63) 

Now, the rates are determined by inverting Eq. (3.63), 

 

( )

( )

sin cos tan

cos sin
sin cos sec

p q r

q r
q r

φ φ φ θ

θ φ φ
ψ φ φ θ

= + +

= −

= +

 (3.64) 

Equation (3.64) constitutes the body-rate equations for a vehicle assuming a flat-earth 

with no wind.  Although useful body-fixed relationships, it is important to note the 

limitation of pitch angle in these rate equations.  For 90θ = ± , the roll rate φ  and yaw 

rate ψ are undefined (i.e., singular). 

(2) Direction Cosine Matrix (DCM).  The DCM was originally 

the predominant method of representing attitude in early strapdown and inertial 

navigation systems.  Briefly introduced in Sec. C.2.d, the DCM is essentially a coordinate 

transformation matrix formed by a series of vector dot products (i.e., direction cosines).  

For example, consider two vectors, ˆˆ andi ja b , such that when taking their dot product 

yields a nine-parameter DCM that rotates from one reference frame (B) to another (A) 

 
1 1 1 2 1 3 11 12 13

2 1 2 2 2 3 21 22 23

31 32 333 1 3 2 3 3

ˆ ˆ ˆˆ ˆ ˆ
ˆ ˆ ˆˆ ˆ ˆ[ ] : :
ˆ ˆ ˆˆ ˆ ˆ

AB
ij

a b a b a b C C C
C a b a b a b C C C

C C Ca b a b a b

⎡ ⎤⋅ ⋅ ⋅ ⎡ ⎤⎢ ⎥ ⎢ ⎥= ⋅ ⋅ ⋅ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⋅ ⋅ ⋅ ⎣ ⎦⎢ ⎥⎣ ⎦

 (3.65) 

where each element represents a cosine of the angle between the i-th axis of the A-frame 

and the j-th axis of the B-frame; hence,  

 
11

2 2

3 3

ˆˆ
ˆˆ
ˆˆ

AB

ba
a C b
a b

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

 (3.66) 
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Due to limited computational efficiency from the redundancies in the nine-parameters 

and the required orthogonalization, this approach to attitude representation is not widely 

used anymore [170]. 

(3) Quaternions.  Originally invented by Sir William Rowan 

Hamilton around 1843 [171] , their use in attitude dynamic simulations was not popular 

until the early 1960’s [170].  Quaternions are of interest since their implementation in the 

EoM will avoid singularities such as those encountered when using Euler angles. 

As previously stated and repeated here for clarity, the orthonormal 

transformation matrix (inertial Earth-frame to body-frame) with Euler rotation sequence: 

yaw, pitch, roll ( , ,ψ θ φ ) is given by 

 
cos cos cos sin sin

[ ] ( cos sin sin sin cos ) (cos cos sin sin sin ) sin cos
(sin sin cos sin cos ) ( sin cos cos sin sin ) cos cos

BET
θ ψ θ ψ θ

φ ψ φ θ ψ φ ψ φ θ ψ φ θ

φ ψ φ θ ψ φ ψ φ θ ψ φ θ

−

= − + +

+ − +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.67) 

 

Quaternions define the orientation of one axis system relative to 

another by characterizing a single rotation about one axis, called the Euler Axis.  

Quaternions have four components, [ ]0 1 2 3, , , TQ q q q q= , where 1 2 3, ,q q q  define a unit 

vector for the Euler Axis and 0q  is related to the magnitude of the angle of rotation about 

the Euler Axis.  The quaternion rates are represented by the following (4x4)-skew-

symmetric matrix of angular rates 

 

0 0

1 1

2 2

3 3

0
01

02
0

q qr q p
q qr p q
q qq p r
q qp q r

− − −⎧ ⎫ ⎧ ⎫⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥−⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥−⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪−⎣ ⎦⎩ ⎭ ⎩ ⎭

 (3.68) 

and each quaternion can be expanded in terms of Euler angles such that 

 

0

1

2

3

cos( / 2)cos( / 2)cos( / 2) sin( / 2)sin( / 2)sin( / 2)
sin( / 2)cos( / 2)cos( / 2) cos( / 2)sin( / 2)sin( / 2)
cos( / 2)sin( / 2)cos( / 2) sin( / 2)cos( / 2)sin( / 2)
cos( / 2)cos( / 2)sin( / 2) sin( / 2)sin( / 2)

q
q
q
q

ψ θ φ ψ θ φ
ψ θ φ ψ θ φ
ψ θ φ ψ θ φ
ψ θ φ ψ θ

= +
= −
= +
= − cos( / 2)φ

 (3.69) 

If needed as an output, the Euler angles can now be determined by solving the system 

given in Eq. (3.69)  to yield   
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0 1 2 3
2 2 2 2
0 1 2 3

1 3 0 2

1 2 0 3
2 2 2 2
0 1 2 3

2( )tan

sin 2( )
2( )tan

q q q q
q q q q

q q q q
q q q q

q q q q

ψ

θ

φ

+
=

− − +

= − −
+

=
+ − −

 (3.70) 

A useful property of quaternions is the orthogonality constraint given by 

 2 2 2 2
0 1 2 3 1q q q q+ + + =  (3.71) 

and the orthonormal transformation matrix, originally given by Eq. (3.67), is now re-

written as 

 

2 2 2 2
0 1 2 3 0 1 2 3 1 3 0 2

2 2 2 2
2 3 0 1 0 1 2 3 1 2 0 3

2 2 2 2
0 2 1 3 1 2 0 3 0 1 2 3

2( ) 2( )
[ ] 2( ) 2( )

2( ) 2( )

BE

q q q q q q q q q q q q
T q q q q q q q q q q q q

q q q q q q q q q q q q

⎡ ⎤− − + + −
⎢ ⎥= − − + − +⎢ ⎥
⎢ ⎥+ − + − −⎣ ⎦

 (3.72) 

(4) Tradeoffs between Euler Angles, DCMs, and Quaternions.  

Overall, the use of a particular set of attitude equations depends on the intended 

application.  Comparing the structure of the equations, the quaternion representation 

consists of four linear differential equations as opposed to nine (or six) linear equations 

for direction cosines or three nonlinear trigonometric equations for Euler angles.  The 

primary advantages of using quaternions for online attitude calculations are that they are 

computationally simple and “globally” nonsingular.  On the other hand, they are less 

intuitive and more difficult to implement.  Plus, Euler angles are required if coordinate 

systems do not coincide at initial time and since they are not readily available; there is the 

burden of additional calculations.  In other words, initialization of quaternions requires 

the calculation of Euler angles anyway. Also, when using quaternions with estimation 

techniques such as in Kalman Filtering, it is possible that a sigularitiy in the covariance 

matrix may result from the lack of independence of the four quaternion components 

[170].  This leads to an un-observable condition when implementing on real hardware.  

The following chart, Table 3.4, summarizes the advantages and disadvantages of the 

three approaches to representing attitude orientation.  
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Table 3.4 Comparison of Three Methods for Attitude Simulation Equations   

 Euler Angles DCM Quaternions 

Advantage 

1. Only 3 equations 

2. Direct Euler angles 

3. Direct initialization 

1. 6 linear equations 

2. Direct TM 

3. No singularities 

1. 4 linear equations 

2. Orthog. Condition 

3. Comp. efficient 

4. No singularities* 

Disadvantage 

1. Nonlinear equations 

2. Singularities 

3. Indirect TM 

1. Indirect Euler angles 

2. Indirect initialization 

3. Comp. inefficient 

1. Indirect Euler Angles 

2. Indirect initialization  

3. Indirect TM 

* Exception – covariance matrix singularity possible in estimation applications 

 

d. Aerodynamic Model 

(1) Aerodynamic Forces and Moments.   Of the forces given 

by Eq. (3.44), the aerodynamic forces (3.45) are by far the most complex, depending on a 

large number of variables.  The aerodynamic forces and moments have various functional 

dependencies that can significantly influence simulations based on the modeling 

techniques employed.  These nonlinear dependencies can create measurement and 

modeling problems that ultimately effect computer simulations.  In general, the 

aerodynamic forces and moments can be represented as a function of flow characteristics 

such as Mach and Reynolds numbers (M, Re), aerodynamic angles and rates 

( , , ,α β α β ), body angular rates (p, q, r), control surface deflections ( , ,a e rδ δ δ ), center 

of gravity (cg), power in the form of thrust, aerodynamic shape, scale, etc. [97].  The 

majority of the dependencies come from the wind-relative incidence angles, body rates, 

and control surface deflections that influence the non-dimensional aerodynamic 

coefficients.  

The aerodynamic data used in this work is explicit functions of 

, , , andMα β δ  such that 
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 , , , , , ( , , , )A Y N l m nC C C C C C f Mα β δ=  (3.73) 

Or more specifically, 

 
, , ( , , , )
, , ( , , )

A m N

l Y n

C C C f M
C C C f M

α β δ
β δ

=
=

 (3.74) 

where δ  is the control surface deflection vector, commonly called the control “effector 

vector”, and for this problem is given by  

 [ , , , , , , , ]
in out in outRE RE LE LE RF LF RR LRδ δ δ δ δ δ δ δ δ=  (3.75) 

such that 

 { }8 : L Uu u u uδ = ∈ ≤ ≤  (3.76) 

The aero-coefficients listed in Eqs. (3.73) and (3.74) correspond to the force and moment 

definitions given in Eq. (3.55) and are defined as follows: 

 

Axial ForceCoefficient along Body x-axis
Side ForceCoefficient along Body y-axis
Normal ForceCoefficient along Body z-axis
Rolling Moment Coefficient about Body x-axis
Pitching Moment Coefficient about Body y-

A

Y

N

l

m

C
C
C
C
C axis

Yawing Moment Coefficient about Body z-axisnC

 

where N ZC =-C  and A XC =-C . The more commonly used lift and drag coefficients 

( ,L DC C ) are geometrically related to the axial and the normal force coefficients 

( ,A NC C ) and can be determined by  

 [ ] [ ]wb wbw b
A A

D X
F S T T Y

L Z

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − = =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

F  (3.77) 

where [ ]wbT is the transformation matrix that rotates the body-frame to the wind-frame 

through the aerodynamic angles and is given as 

 [ ]
cos cos sin sin cos
cos sin cos sin sin

sin 0 cos

wbT
α β β α β
α β β α β

α α

⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

 (3.78) 

This yields the following expressions for drag, sideforce, and lift coefficients 

 D X Y ZC  = C cos cos C sin  C sin cosα β β α β− − −  (3.79) 
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 S X Y ZC C cos sin C cos C sin sinα β β α β= − +  (3.80) 
 L X ZC  =  C sin  C cos  α α−  (3.81) 

In terms of the sign convention along the body-axes ( N ZC =-C  and A XC =-C ) these 

equations can be re-written as  

 D A Y NC  =  C cos cos C sin  + C sin cosα β β α β−  (3.82) 
 S A Y NC C cos sin C cos C sin sinα β β α β= − −  (3.83) 
 L A NC  = C sin  + C cos  α α−  (3.84) 

For zero sideslip ( 0)β = , these equations reduce to the following  

 D A NC  =  C cos  + C sinα α  (3.85) 
 S YC = C  −  (3.86) 
 L N AC  =  C cos  - C sinα α  (3.87) 

with their corresponding 2-D relation depicted in Figure 3.12.   

 

 

 

 

 

 

 

Figure 3.12 2-D Relationship Between Aerodynamic Coefficients for 0β = . 

 

From Eq. (3.83), for angles of sideslip between 0-8 deg, S YC C≈ − ; therefore, for most 

flight regimes this is a valid assumption, especially for hypersonic reentry where sideslip 

is approximately zero for the majority of the flight.   

(2) Stability and Control Derivatives.  The stability and control 

derivatives, a result of small-disturbance (i.e., perturbation) equations, provide 

incremental changes to the aerodynamic coefficients as a result of changes in both 

longitudinal and lateral stability and control variables.  That is, stability derivatives are 

+zb

+xb
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CL

CN

V

CD

α
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CN

V

CD
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the partial derivatives of the force and moment coefficients with respect to various 

motion variables.  For example, consider small-perturbations in force and represent the 

force equation for X as a Taylor series expansion [100],  

 ( , , , ,..., , ) ... ... . . .e e e
e

X X XX u u w w u u H O T
u u

δ δ δ
δ

∂ ∂ ∂
Δ = Δ + Δ + Δ +

∂ ∂ ∂
 (3.88) 

Here, the stability derivative for the forward speed, u, is given by the partial derivative 

term X
u

∂
∂

.  This dimensional stability derivative can then be non-dimensionalized to yield 

its corresponding stability coefficient, 
uXC .  The aero data used in this work explicitly 

depends on the non-dimensional longitudinal and lateral derivatives shown in Table 3.5 

and Table 3.6, respectively.  

 

Table 3.5 Nondimensional Longitudinal Derivatives 

 AC  NC  mC  

α  AC
α

 NC
α

 mC
α

 

u uAC  
uNC  

umC  

q̂  
qAC  

qNC  
qmC  

 

Table 3.6 Nondimensional Lateral Derivatives 

 YC  lC  nC  

β  YC
β

 lC
β

 nC
β

 

p̂  
pYC  

pl
C  

pnC  

r̂  rYC  
rl

C  
rnC  

 
Note that the terms ˆ ˆ ˆ, , andp q r  are the scaled body angular rates more thoroughly 
defined in the next section.    
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(3) Aerodynamic Data and Component Buildup.  Aerodynamic 

coefficients are determined by various methods to include wind tunnel testing, flight 

testing, computational fluid dynamics (CFD) analysis, analytical analysis based on 

theoretical approximations, or a combination of such.  A more detailed explanation of 

aerodynamic coefficient measurements and estimations can be found in Ref. [26].  When 

used for computer modeling and simulation applications, empirical data is often tabulated 

so that computer simulations can perform a series of calls to a collection of data tables.  

For the 6-DOF models in this work, aerodynamic data is tabulated such that it depends on 

11 independent variables creating a significantly large database of tables that in itself, 

takes a noticeable amount of computer resources to retrieve a coefficient value.  This is 

especially true for highly iterative algorithms such as those involving optimization 

routines.   

In addition to the size of the tables, organization of the data is also 

a factor that can affect computational performance.  Due to the discrete data, 

interpolation is required for arbitrary values throughout the vehicle’s flight regime.  Since 

it is difficult to physically interpret (i.e., visualize) higher-dimensional data, the task of 

developing an interpolating algorithm is further complicated.  For this reason, it is 

advantageous to use a component buildup method such that the individual aero 

coefficients are formed from a sum of components.  In this fashion, the measurement (via 

wind tunnel), organization of data, and computer/mathematical manipulation and 

interpolation is simplified.  Individual components have fewer dimensions that are much 

easier to interpolate in a table or approximate by curve/surface fitting if needed.   

To demonstrate the component buildup of a coefficient, consider 

only the axial force coefficient.  First, the coefficient can be expressed as a sum of a base 

term and a delta term 

 
BAEA A AC C C

δ
= +  (3.89) 

where BAEAC is the base-aero-engine (BAE) contribution to axial force that includes wing-

body and propulsion interference effects and AC
δ  is the control effector vector 

contribution to the axial force that is a summation of the effects from the individual 
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control surface deflections such that 
1

i

n

A A
i

C C
δ δ

=

= ∑ for the n-controls (n=8 for X-33).  

Secondly, the BAE contribution consists of a base term and a damping derivative term 

such that   

 ˆ
BAE base qA A AC C C q= +  (3.90) 

where q̂  is a scaled pitch rate.  It is necessary to non-dimensionalize the damping 

derivatives using the normalized scaling factors from thin-airfoil theory: (
2
b
V

) and (
2
c
V

) 

for lateral-directional and longitudinal terms, respectively, to form the scaled rates  

 

ˆ
2

ˆ
2

ˆ
2

pbp
V

qcq
V

rbr
V

=

=

=

 (3.91) 

such that the change in axial force coefficient due to pitch rate, 
qAC , is non-

dimensionalized as follows 

 1 rad ftˆ × no units!
2 rad sec ft/secq qA A
cC q C q
V

⎛ ⎞ ⎛ ⎞= → × =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (3.92) 

Note that in terms of linear incremental changes, the base term can also be expressed as 

 
0baseA A A AC C C C

α β
α β= + +  (3.93) 

where 0AC is the axial force coefficient when the vehicle is in the “clean” configuration, 

that is,  at zero AoA and zero bank angle with no control surfaces deflected; AC
α is the 

axial force coefficient due to AoA; and AC
β  is the axial force coefficient due to bank 

angle.  All together, each of the BAE terms for the aerodynamic coefficients are given as 
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ˆBAE base q

ˆ ˆBAE base p r

ˆBAE base q

ˆ ˆBAE base r p

ˆBAE base q

ˆ ˆBAE base r p

A A A

Y Y Y Y

N N N

l l l l

m m m

n n n n

C   = C  + C

C   = C   + C  + C

C   = C   + C  

C  = C  + C  + C

C   = C   + C

C  = C  + C  + C

 (3.94) 

such that the total aerodynamic coefficients can be represented as a component buildup 

with their respective dependencies listed in the following form 

 

ˆbase q e bf

ˆ ˆbase p r re

ˆbase q e bf

base

A A A A A

Y Y Y Y Y Y

N N N N N

l l

C   = C ( , , ) + C ( , , ) C ( , , ) C ( , , )

C   = C ( ) + C ( , , ) + C ( , , ) C ( , , ) C ( , , )

C   = C ( , , )  + C ( , , ) C ( , , ) C ( , , )

C  = C ( , ,

M M q M M

M p M r M M

M M q M M

δ δ

δ δ

δ δ

α β α α β α β

β α α α β α β

α β α α β α β

α β

+ +

+ +

+ +

ˆ ˆr p e r

ˆbase q e bf

ˆ ˆbase r p e r

l l l l

m m m m m

n n n n n n

) + C ( , , ) + C ( , , ) C ( , , ) C ( , , )

C   = C ( , , )  + C ( , , ) C ( , , ) C ( , , )

C  = C ( , , ) + C ( , , ) + C ( , , ) C ( , , ) C ( , , )

M M r M p M M

M M q M M

M M r M p M M

δ δ

δ δ

δ δ

α α α β α β

α β α α β α β

α β α α α β α β

+ +

+ +

+ +

 (3.95) 

Now, substituting (3.90) and 
1

i

n

A A
i

C C
δ δ

=

= ∑  , the aerodynamic force BAEX X Xδ= +  in 

Eq. (3.54) becomes 

 
2BAE base qBAE ref A ref A A
cX qS C qS C C q
V

⎧ ⎫⎛ ⎞= − = − +⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

 (3.96) 

 
8

1
iref A ref A

i

X qS C qS C
δ δδ

=

⎧ ⎫= − = − ⎨ ⎬
⎩ ⎭
∑  (3.97) 

where q  is the dynamic pressure given as 

 21 ( )
2

q z Vρ=  (3.98) 

(4) Aerodynamic Approximations via Data Fitting.  Table 

look-up data is inherently non-smooth with numerous discontinuities, especially so for 

uncertain aerodynamic data.  Measured data from flight-tests and/or wind-tunnel tests is 

always subject to error sources such as instrumentation inaccuracies, human error, etc.  

For example, the following coefficient uncertainties for the HL-20 lifting-body 
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configuration are primary influenced by calibration accuracy of a strain gage used during 

wind-tunnel testing [172]. 

CN                     CA                         CY                    Cm                     Cn                       Cl 

±0.00352  ±0.000264  ±0.00044  ±0.00090  ±0.00029  ±0.000156 
 

Note that specific comments about X-33 aero-model uncertainty are presented in the 6-

DOF results (Chapter VI) and Appendix A. 

From a statistical perspective, large errors may result from an 

inadequate number of test runs, like not performing enough flight test maneuvers or 

running enough wind tunnel tests.  Likewise, engineering code estimates often have 

errors due to variations in maneuver quality, analysis, engineering judgment, and 

prediction techniques [173].  A NASA study, reported by Cobleigh, developed an X-33 

aerodynamic uncertainty model that indicated up to 43% uncertainty in the pitching 

moment due to body flap deflections and 80% uncertainty due to pitch damping [173].  In 

terms of data organization, another source of error is caused by piecing together data 

from different test runs and from sensitivities to small changes in the independent 

variables [26].  Although using a component buildup scheme seems to simplify data 

handling, any problems with the data are propagated by each component.  For these 

reasons and the reasons mentioned in the previous section, aerodynamic data modeling is 

an important concern for flight simulations, especially when solution accuracy is 

paramount.  The two primary approaches for improving aero-data models are data fitting 

via curve-fitting approximations or data smoothing via regression analysis.     

Various methods can be used to smooth and re-tabulate the data 

such as polynomial approximations, splines, etc.  Interpolation, smoothing methods, 

neural networks, and numerical results for handling large data tables and their effects on 

computational performance are mentioned as possibilities for future work in Chapter VI. 

e. Complete Standard 6-DOF EoM 
Now that the position, velocity, body-rate, and Euler angle equations have 

been presented and defined, the complete 6-DOF EoM can be succinctly combined as 

shown in Figure 3.13. 
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 [cos cos ] cos cos [sin sin cos cos sin ] sin [sin sin cos sin cos ] sin cos
[cos sin ] cos cos [cos cos sin sin sin ] sin [cos sin sin sin cos ] sin cos
[ sin ] cos cos [sin cos

e

e

e

x V V V
y V V V
z V

θ ψ α β φ θ ψ φ ψ β φ ψ φ θ ψ α β
θ ψ α β φ ψ φ θ ψ β φ θ ψ φ ψ α β
θ α β φ θ

= + − + +

= + + + −

= − +

[ ] [ ] [ ]

[ ]

] sin [cos cos ] sin cos

sin cos cos sin cos sin cos cos sin cos

1 cos sin cos cos cos sin sin tan cos sin
cos cos

cos sin cos sin cos

V V

X Y ZV g g g
m m m

gZ X q p r
mV V

Y mg p r
mV

β φ θ α β

θ α β φ θ β φ θ α β

α α α φ θ α θ α β α α
β β

ββ φ θ α

+

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − + + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= − + + + − +

= + + − [ ] [ ]

( ) ( )

( ) ( )

( )

2 2

2 2

2

sin sinsin cos cos cos sin sin cos

1

zz xz
zz yy xz xx yy xz

xx zz xz xx zz xz

xx zz xz
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xz x
yy zz xz
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I Ip L I I qr I qp N I I qp I qr
I I I I I I

q M I I pr I p r
I

I Ir L I I qr I qp
I I I I I

β βα α α φ θ α θ α− + − −

⎡ ⎤ ⎡ ⎤= − − + + + − −⎣ ⎦ ⎣ ⎦− −

⎡ ⎤= − − − −⎣ ⎦

⎡ ⎤= + − + +⎣ ⎦− −
( )

( )
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2
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cos sin
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I
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1 , , ,
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1 , ,
2
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ref Y
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ref l

ref m
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Figure 3.13 Standard 6-DOF EoM for Flat Earth, No Wind Model. 

 

These standard 6-DOF equations assume a rigid-vehicle, constant mass, constant inertia 

tensor, no thrust, no wind, non-relativistic mechanics, flat-earth model, and negligible 

cross-products of inertia for andxy yzI I .  Although common in aircraft simulations, these 

equations may pose various problems for G&C applications involving trajectory 

optimization schemes, especially for hypersonic reentry guidance. 

f. Drawbacks of the Standard Flight EoM 

Despite their relatively straight-forward derivation and common use in 

modeling and simulation studies, the standard EoM have various drawbacks that may 

prohibit their use in trajectory optimization applications.  Among these drawbacks are 

complexity, singularities, and scaling. 

By visually inspecting the complete equations in Figure 3.13, it is obvious 

that they are quite complex.  The position equations ( , , )e e ex y z  alone consist of 

numerous nonlinear trigonometric functions that are highly coupled to both the velocity 
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equations ( , , )V α β  and the rotational Euler-rate equations ( , , )φ θ ψ .  From a modeling 

approach, this highly-coupled nature of the translational and rotational equations poses a 

problem with using a homotopy path to problem solving (as discussed later).  These 

equations also present potential singularity problems.  In addition to the singularity 

condition in the Euler-rate equations when 90degθ = ± , the spherical velocity equations 

also have singularities at 0 and 90degV β= = ± .  As mentioned earlier, an alternate 

formulation that avoids the singularities associated with the spherical velocity equations 

consists of using the linear velocity equations, see (3.53), repeated here for clarity, 
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 (3.99) 

and replacing the corresponding terms in the position equations with (3.26), 
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 (3.100) 

to revert back to (3.29), 
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 (3.101) 

The drawback of using these alternate equations for position and velocity 

are that AoA and sideslip angle are not readily available (i.e., not part of the state vector).  

Since they are required for aerodynamic force and moment calculations, they would have 

to be computed using Eqs. (3.33) and (3.34).  Also, substituting (3.99) and (3.101) into 

the standard equations provides slight simplifications without as many singularities but, 

there are still drawbacks from the computational perspective.  Recall from Chapter II that 

scaling and balancing equations can have a significant effect on the computational 
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efficiency of a numerical algorithm.  As previously pointed out, using x,y,z-Cartesian 

positional coordinates in the body-fixed frame can present a scaling problem for flight 

trajectories involving drastically different crossrange and downrange values.  This scaling 

issue can be avoided altogether by selecting coordinates that are more advantageous for 

numerical methods such as the spherical polar coordinates in the vehicle-carried frame.  

One final drawback to the standard equations is their limited use for 

applications involving high-speed flight over large portions of the earth’s surface such as 

the case for reentry problems.  As mentioned, the Cartesian position equations assume a 

locally flat earth such that the earth-fixed inertial frame is equivalent to the local 

horizontal frame.  To account for the spherical, rotating earth effects encountered in 

reentry problems, additional terms must be added to the translational EoM.  Using the 

standard equations requires these new spherical terms be converted to a Cartesian 

representation that adds additional complexity.  Therefore, it makes sense that using 

spherical polar coordinates in the first place will eliminate any unnecessary complexities 

and potential computational problems.     

2. Alternate Flight Vehicle Model(s) 
A much less complex and numerically tractable formulation exists using spherical 

polar coordinates in the vehicle-carried frame.  Substituting (3.23) for (3.31), and taking 

the derivatives of Eqs. (3.41)-(3.43) with respect to time yields the following position and 

velocity equations 
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 (3.102) 

where according to Eqs. (3.79)-(3.81), the X, Y, and Z forces have been replaced by the 

lift, drag, and side forces represented in Eq. (3.102) as L, D, S, respectively.  With the 

addition of spherical, rotating earth terms, these equations alone constitute the standard 3-

DOF point-mass EoM presented by Vinh, Buseman, and Culp [95], as shown in Figure 

3.16(a).  Now, the original 6-DOF rotational equations can be appended to (3.102) to give 

a mixed body-frame and air-relative frame set of EoM succinctly written as 
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Figure 3.14 Alternate 6-DOF EoM. 
 

3. Contrast Standard vs. Alternate Model 
Comparing the standard EoM in Figure 3.13 with the alternate set in Figure 3.14, 

it is apparent that the complexity associated with the first six equations is removed.  This 

simplification is a direct result of eliminating the Euler angles as the primary coupling 

terms.  Instead, the primary coupling of the translational and rotational equations is 

through the flight angles α and β .  Note that only β  is explicit in the equations; whereas 

both α and β  are embedded in the aerodynamic forces and moments by the inter-

dependence of the aerodynamic coefficients, e.g.,, ( , , , )ZC f Mα β δ= .  Like the alternate 

position and velocity equations given for the standard model, Eqs. (3.99) and (3.100), this 

model also requires α and β to be calculated indirectly; however, instead of the remedial 

calculations of Eqs. (3.33) and (3.34), the more accurate relations given by Eqs. (3.16)-
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(3.18) can be used.  This EoM selection naturally removes the scaling problem presented 

by the crossrange position equation, Ey , in the standard EoM.      

 

E. REDUCED-ORDER DYNAMICAL MODEL (3-DOF)  

Most reduced-order models ( 4-DOF≤ ) assume the vehicle is a point-mass as 

opposed to a rigid body.  This means that only the translational equations are 

implemented without regards to the rotational equations as included in the 6-DOF 

formulations in Sec. D.     

1. Point-Mass Equations with Sideslip 
Commonly used sets of dynamical equations of motion for an un-powered reentry 

vehicle are shown in Figure 3.15, illustrating the simplification from a spherical, rotating-

earth model to a flat-earth model.  Note that in these equations, the Heading/Azimuth is 

measured positive clock-wise from the East as opposed to the conventional positive 

clockwise from the North. 
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Figure 3.15 Common Point-Mass Equations of Motion ( 0β ≠ ). 

 
 

2. Point-Mass Equations with Zero Sideslip 
Most applications assume steady, coordinated turns such that the sideslip angle is 

zero ( 0β = ).  This further simplifies the equations as depicted in Figure 3.16. 
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Figure 3.16 Common Point-Mass Equations of Motion ( 0β = ) 

 

3. General Comments Regarding Point-Mass Models 
The subtle effects associated with a spherical, rotating Earth are represented by 

the Coriolis acceleration term ( 2Ω ), the centrifugal acceleration term ( 2rΩ ), and the 

variation of gravitational acceleration ( Er R h= + ) in Figure 3.15(a) and Figure 3.16(a).  

For high-speed, long-range flights over the surface of the Earth, these round-earth effects 

should not be ignored for high-accuracy analysis.  On the other hand, when concerned 

with only local effects or variation of the vehicle’s suborbital speed and altitude over a 

certain (shorter) range of the flight trajectory, a flat-earth model is viable in which the 

corresponding terms vanish as in Figure 3.15(c) and Figure 3.16(c).  When transforming 

from (b) to (c) in both figures, recall that the conversion of spherical kinematics to 

Cartesian (“local-horizontal”) kinematics was demonstrated in Sec.D.1.a.  

 

F. MODELING THE ENVIRONMENT 
As previously indicated, it is paramount that accurately solving a problem 

requires the correct formulation to the degree of fidelity dictated by the specific 
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application.  Likewise, an important aspect of formulating any engineering problem is the 

underlying assumptions made.  In most cases, assumptions are made in an effort to 

simplify the problem.  For solving problems that seek high-accuracy results, careful 

choices must be made when deciding, if at all, on simplifying assumptions.  For the 

modeling and simulation of aerospace vehicles, the fidelity of the system model depends 

heavily on the fidelity of the subsystem models.  Of primary importance is the choice of 

subsystem models that approximate the environment in which the vehicle will be 

operating (i.e., the flight envelope).  For the reentry problem, high-speed, trans-

atmospheric flight over large areas of the Earth’s surface necessitates the use of an Earth 

model, including its shape, rotation, and gravity, and an atmospheric model.  The 

following sections give a brief description of the environment models of varying fidelity.  

1. Earth Model: Shape and Gravity 
As with any model, design or selection depends on the specific application and the 

desired accuracy of the results.  For the Earth model, of particular interest is the trade-

offs between flat vs. round shape, including spherical vs. oblate spheroid, non-rotating vs. 

rotating, and gravity based on potential function, inverse-gravity relation, or constant 

vector.  The trade-offs are discussed in subsequent sections, but for now, a description of 

the models are provided for clarity later.  Note that extensive details on Earth’s form and 

its gravitational field can be found in Ref. [96]. 

a. Ellipsoidal-Earth Model 
The highest fidelity Earth model is based on the ellipsoidal approximation 

provided by the 1984 World Geodetic System (WGS-84) [174].  The irregular shape of 

the Earth, geoid, is modeled as an ellipsoid of revolution (oblate spheroid) defined by the 

primary characteristics of semi-major, a, and semi-minor axes, b; flattening factor or 

ellipticity, f; eccentricity, e; sidereal rate of rotation, Eω ; and gravitational constant, GM, 

all given as: 
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Although there is a difference between geometrical and physical geodesy, all 6-DOF 

models suffice with the WGS-84 approximation [97].  Note that the semi-major axis, a, is 

often referenced as Earth’s equatorial radius, 6378.136 kmER = .  Also, Eω assumes a 

constant rate of rotation around a fixed inertial axis.   

The gravity model that corresponds with the precision of WGS-84 is the 

1996 Earth Gravitational Model (EGM96) that is based on gradients of a scalar potential 

function [175].  The gradients of a simplified potential function [26] are given in 

geocentric coordinates as   

 
2

2
2 2 2

2

3 ( / ) sin cos
1 1.5 ( / ) (3sin 1)

c c
E

c

J a rGM
r J a r

λ λ
λ

⎡ ⎤
= ⎢ ⎥+ −⎣ ⎦

G  (3.103) 

with 3
2 2,05 1.0826267 10J C −= = − × as the zonal harmonic term that includes the largest 

potential function coefficient, 2,0C .  According to Stevens and Lewis, there are hundreds-

of-thousands of coefficients, but using only 2,0C  “removes the dependence on terrestrial 

longitude” and results in extremely accurate models [26].  Also, it is possible that 

accurate accelerometers can compensate for the small errors associated with omitting 

higher harmonic terms.      
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b. Spherical-Earth Model  

A medium-fidelity Earth model is then naturally defined as a spherical 

approximation to the oblate spheroid with the mean-radius defined as 6367.474 kmmR = .  

Note that this radius is lower than the equatorial radius of the elliptical model. 

The gravity field can be approximated from Newton’s law of gravitational 

acceleration defined by the attracting force, F, between two objects with mass M and m, 

and separated by the radial distance r, such that 

 2

MmF G
r

=  (3.104) 

where G is the universal gravitational constant.  Solving this equation for g results in the 

well known inverse-gravity law stated as   

 2 2

GMg
r r

μ
= ≡  (3.105) 

The distance r is measured from the Earth’s center of mass (cm) to the object’s cm such 

that 

 ( )mr R h z= +  (3.106) 

where ( )h z is the geopotential altitude defined as ( ) m

m

R zh z
R z

=
+

 that accounts for the 

Earth’s mass attraction and the centrifugal effect of its rotation.  For flights remaining at 

lower altitudes, the geometric altitude, z, is adequate and can replace ( )h z in Eq. (3.106).  

Note that by setting 2 0J = in the ellipsoidal-earth gravity model, Eq. (3.103) reduces to 

the inverse-gravity relation essentially the same as setting 0 and mf a R= = .   

c. Flat-Earth Model 

The lowest fidelity Earth model is the flat-earth approximation whereby Earth is 

considered a stationary plane of symmetry typically described by Cartesian x,y,z-

coordinates.  As such, this model neglects variations in gravity and rotational effects (i.e., 

Coriolis and centripetal/centrifugal).  For this model, it is common to use the down 

component of the gravity vector at Earth’s surface ( 45 geodetic latitude) given as 
29.806 m/sg =  and the distance r becomes the geometric distance z, now only the 
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vertical distance above the flat-earth.  In addition to the shape of the earth and the gravity 

field, another important part of the environment for a flight vehicle is the atmosphere.  

2. Atmospheric Model 
The Earth’s atmosphere is defined by the fundamental fluid properties of pressure, 

density, and temperature that vary with altitude, time-of-day, weather, etc. and are related 

by the “equation-of-state.”  Since aerodynamic forces directly depend on air density, it is 

important for aeronautical engineering problems to use a standard model of the 

atmosphere.   

a. Standard Atmosphere Tables 
Various models exist based on measured, averaged, and curve-fitted data.  

Since the atmosphere is constantly changing, these models are updated every few years or 

so.  Often used is the 1976 U.S. Standard Atmosphere that is normalized to “standard” 

sea-level conditions.  Although it covers altitudes up to 1000 km at 45 degrees latitude, 

an accurate model above 80 km is irrelevant since the aerodynamic loads are negligible in 

this region [97].  Another common, but slightly out-dated model is the 1959 ARDC. 

Zipfel compares different models and discusses their subtle differences [97].  

b. Atmosphere Approximations: Curve-Fits  
Although many applications use variants of atmosphere tables developed 

over the years including curve-fits to the tabulated data as opposed to implementing strict 

table “look-ups”, there are relatively accurate approximations that do not require actual 

measured atmosphere data.  For example, a common curve-fit approximation to the 

atmosphere is the two-parameter exponential model that has many variants depending on 

the atmospheric region of interest.  For closed-form solutions with altitudes between 5 

km to 40 km, a good exponential approximation is given by Ref. [96] as 

 0( ) /
0( ) h z zz eρ ρ −=  (3.107) 

where 0ρ is the reference density taken to be 1.725 kg/m3 (0.003399 slugs/ft3), z is the 

current altitude, and 0
0

RTz
g

= is the atmospheric scale height (i.e., reference height) taken 

to be 6700 m (21981.6 ft).  Note that mR in the expression for ( )h z can be replaced by ER  

for an elliptical-earth model, but there is negligible difference.  Assuming the atmosphere 
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is isothermal and sea-level temperature, the following values can be substituted: 
3

0 1.225 kg/mρ = and 0 8434mz = .  An alternative to Eq. (3.107) is the variant  

 0( )
0( ) r rr e βρ ρ − −=  (3.108) 

where 0ρ is the reference sea-level density, r is the current altitude measured from the 

center of the earth, -1 4.20168e-5 ftβ = is the inverse atmospheric scale height, and 

0 = 2.09e7 ftr is a reference altitude.  Note that when 0 20925646.3255 ft Er R= ≈ then Eq. 

(3.108) is equivalent to Eq. (3.107).  Therefore, with knowledge of the vehicle’s 

operating envelope, this exponential model allows one to specify the altitude range of 

interest by selecting 0r  accordingly.  Figure 3.17 compares two tabulated and two 

exponential atmosphere models.  As seen, all converge at higher altitudes with slight 

discrepancies at the lower altitudes.    

 
Figure 3.17 Comparison of Density-Altitude for Various Atmosphere Models. 

 
3. Wind Model 

The most common form of external disturbance encountered during 

atmospheric flight is the changing direction and intensity of the air mass itself (i.e., 

wind). There are various forms of wind and numerous ways to model wind.   
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a. Wind Gradient Approximation in Equations of Motion   

Typical aircraft and wind disturbance analysis employs an analytical 

approximation to the wind’s flow field characteristics. For example, a 

windshear/downdraft can be modeled as 

 ( )xW wA x=  (3.109) 

 
*

( )h
hW w B x
h

=  (3.110) 

where w is the intensity of the windshear/downdraft combination; the functions A(x) and 

B(x) represent the wind gradients as shown in Figure 3.18; and h* is a reference altitude 

based on the range of validity.  At lower altitudes, these wind velocity components 

typically form a wind shear that is commonly represented by a parabolic gradient as a 

function of altitude.   

 
 

(a) (b) 
 

 
Figure 3.18 Approximation of Horizontal and Vertical Wind  

Gradients Acting on Vehicle. 
 

Various wind models (both discrete and continuous) and modeling 

standards exist, such as numerous wind gust models, a standard Dryden Wind Turbulence 

Model, and a standard Von Karman Wind Turbulence Model as specified by Military 

Specification MIL-F-8785C [176] and Military Handbook MIL-HDBK-1797 [177].  As a 

feasibility study only, the work presented in Chapter IV employs a simplified approach to 

model a wind gust as illustrated by Figure 3.18 (b). 

Assuming a flat-earth approximation to the equations of motion, wind is 

often modeled by adding wind velocity components in the Cartesian x,y,z-directions 

( ), ,x y zW W W  to the kinematical equations such that 
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and likewise, the wind acceleration components ( ), ,x y zW W W  are added to the dynamical 

equations of motion 
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that when combined, form a new set of equations that includes the effects of a wind 

gradient model.   

 

G. HOMOTOPY PATH TO MODELING 

1. Model Reduction Process 
Model fidelity has to do with the degree to which the model reproduces the 

essential characteristics of the real system being modeled such that a high-fidelity model 

is nearly indistinguishable from the real system.  In the past, reducing the fidelity of a 

model by way of various simplifying assumptions was required in order to solve complex 

problems.  One such process involved reducing the order of the problem in terms of the 

number of differential equations.  Although reasons for using lower fidelity models for 

aerospace problem solving have shifted from mandatory to preliminary, the process is 

still required. Today, solving lower-fidelity problems is often used for preliminary 

analysis and for approximating solutions to higher order problems.  These 

approximations can then be used as baselines for validating higher order solutions. The 

difficulty lies in the fact that experience and sound engineering judgment must go into the 

simplifying process. Also, there are some problems where low-order solutions are not 

representative of high-order solutions and care must be given as to how the low-order 

solution is interpreted and more importantly, how it is used.  For example, a motivation 

for the high-fidelity reentry research presented in this work is that reentry algorithms 

based on low-fidelity models pose a potential safety concern.  In this case, the two 
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primary questions become: (1) what level of fidelity is adequate in representing the real 

system or in satisfying the intent of the problem? and (2) what solution gives trust 

worthy, meaningful results?  For example, some engineers solving path planning 

problems base their models only on kinematical equations of motion.  This may be 

suitable for generating a feasible path in terms of vehicle position and velocity, but by 

excluding the dynamics, the path may not be physically realizable in terms of forces and 

moments.  The key is to base the simplification on a successive process of reducing the 

mathematical order of the system while still maintaining physical coherency.  If nothing 

else, this homotopy path to modeling and problem solving is essential for understanding 

the system and debugging any mathematical, physical, or algorithmical problems.    

2. General Homotopy Path to Modeling 
The general homotopy path to modeling consists of defining the highest-order 

possible for a given system, say order n, and then simplifying the order of the system 

such that a sequence of lower-fidelity models is formed.  Due to the criticality of the 

assumptions between each level of fidelity, this process of model reduction is 

application-specific and discipline-specific; thus requiring a substantial amount of insight 

into the physics behind the problem.  More on the model reduction process and a 

homotopy path to problem formulation can be found in Ref. [154].  The next section 

gives an example of a homotopy path to formulating a 6-DOF flight vehicle dynamical 

model. 

3.  Example Homotopy Path to High-Fidelity Flight Vehicle Model 
The following development illustrates a homotopy modeling sequence from low-

order (2-DOF) to high-order (6-DOF) flight vehicle equations of motion.  These 

problems, P1 to P8, assume a flat-earth, small roll/bank angles, and coordinated 

turns ( 0)β = ; however, the same process can include spherical earth terms, large angle 

aerodynamic relations, and nonzero sideslip. 
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6-DOF 
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These equations can be modified to include sideslip by adding the corresponding 

sideslip terms in the dynamical equations and adding β  as a control in P3, a pseudo-

control in P4, etc. until the inclusion of β  given by 
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H. CONCLUDING REMARKS 
This chapter’s main purpose was to characterize the vehicle and to summarize the 

development of the 6-DOF model and its environment for use in the high-fidelity 

trajectory optimization simulations presented in Chapter VI.  Since all of the work 

presented in this dissertation was based on the X-33 RLV, an overview description was 

necessary to familiarize the reader with the size, functionality, and general characteristics 

of the vehicle used in the trajectory optimization simulations that follow.  Although the 

parameters are specific to the X-33 in this work, the guidance and control method is 

vehicle-independent and as such, the data for any RLV, or flight vehicle for that matter, 

could be substituted.  As presented, a 3-DOF model is readily available from 

simplification of the full, 6-DOF equations and will be applied in the next chapter.  In 

addition, as with all engineering efforts involving the modeling and simulation of 

complex systems, an ideal hierarchy to increasing fidelity exists; however, this path is not 

always clear.  The presented homotopy path to modeling is just one of many ways to 

systematically solve complex problems. 
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IV. 3-DOF REAL-TIME TRAJECTORY OPTIMIZATION 

A. INTRODUCTION 
Historically, trajectory design (e.g.,, path planning) and analysis was a tedious, 

complex process conducted offline that often took days, weeks, or months.  Recently, 

with new techniques and more powerful computer technology, trajectory generation is a 

lot simpler and can be done online in seconds, minutes, or hours.  In recent years, it has 

been shown [83],[84] that pseudospectral (PS) methods are capable of generating real-

time trajectories for a 3-DOF dynamical model for the Space Shuttle vehicle model 

parameters.  Real-time and near real-time trajectory generation is now possible.  Not only 

is it possible, but the laborious design process has been streamlined to simply setting up 

the problem in terms of model parameters, state variables, boundary conditions and 

constraints, i.e., the optimal control problem formulation, and then using a optimization 

tool to solve.  Using such formulation for a 3-DOF dynamical model and a PS-based 

optimization method, this chapter provides optimal open-loop and closed-loop solutions 

with three primary purposes: 1.) to combine and extend emerging concepts in real-time 

optimal control to address the difficulties in entry guidance, 2.) to demonstrate the 

feasibility of using such a unified approach based on optimal control theory as a highly 

effective and general-purpose guidance method, and 3.) to investigate various ideas using 

the 3-DOF model that can be extended to the full, 6-DOF methodology; hence, serving as 

a framework or baseline.   

Since recent work has employed the use of optimal control via DIDO to address 

specific problems like range maximization [83], trajectory reshaping with effector 

failures [46], and footprint determination [47],[86], it is the intent of this work to 

combine these contributions with many of the emerging concepts in real-time optimal 

control to address the difficulties in entry guidance.  To this end, it circumvents the 

traditional problems that arise in entry segmentation, such as the concept of Terminal 

Area Energy Management (TAEM), and instead embarks on using a single algorithm to 

guide the vehicle from its entry conditions all the way to a neighborhood of the landing 

site.  Thus, given the coordinates of a landing site, the goal of the entry guidance 

algorithm is to guide the vehicle to an automatically generated final approach corridor for 
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handover to an autoland program.  In principle, it is possible for a PS-based method to 

perform autoland as well, but for the purpose of limiting the scope of this research, 

autoland guidance is omitted.  In addition to developing an automated method for 

generating terminal guidance conditions and as a result of using nonlinear optimal control 

and the elimination of trajectory segmentation, the need for gain scheduling is also 

removed.  This provides a unique and effective approach facilitating an on-board, 

autonomous capability. 

To demonstrate how using nonlinear trajectory optimization to solve the RLV 

reentry problem can provide on-board, autonomous capability, this chapter entails open-

loop solutions used to generate landing footprints and intelligent path planning to 

terminal guidance conditions with an example illustrating a feasibility-based landing site 

re-targeting scenario.  Likewise, this chapter goes beyond previous work by 

implementing a PS-feedback method to generate closed-loop, optimal guidance that 

compensates for large uncertainties and disturbances. 

Based on the possibility of real-time optimal control, a PS feedback theory has 

been formulated by Ross et al. [148].  For entry guidance, this approach updates the 

guidance laws in the so-called Carathèodory sense, rather than the standard sampled data 

feedback approach.  This type of an update permits a longer computational time that may 

be exploited to solve high-fidelity trajectory optimization problems.  An introduction to 

this approach is described in Chapter II along with details on the PS method and the 

spectral algorithm (packaged into DIDO) used to generate the optimal controls.  An 

important result of the closed-loop work is the revelation that under the PS guidance law, 

the simplified X-33-based generic vehicle is capable of guiding itself to a landing site 

despite the extreme situation of hurricane wind effects that exceed Category 5.   

Overall, the 3-DOF work presented in this work is intended to serve as a building 

block to the full, 6-DOF reentry problem.  Following suite as in most engineering 

practices, it is advantageous to test the various guidance and control ideas on a simpler 

system or a reduced-order model before proceeding to more complex, higher-order 

systems.     
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B. OPEN-LOOP, OPTIMAL TRAJECTORY GENERATION 

1. 3-DOF Model 
To confirm the feasibility of this method for solving the RLV reentry problem, 

various open-loop problems were formulated and solved.  For all of the results presented 

in this section, the equations of motion used in the optimal control formulation are the 

standard 3-DOF dynamical model for an entry vehicle in a rotating atmosphere around an 

inverse-square law gravitational field as explained in Chapter III and repeated here for 

completeness.  
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where 2/g GM r=  is the inverse-square gravitational acceleration, Er R h= + is the 

radial position measured from the center of the Earth, μ is the geocentric longitude, λ  is 

the geocentric latitude, V  is the total airspeed (i.e., velocity magnitude), γ  is the 

vehicle’s flight path angle (FPA), and ξ is the vehicle’s heading angle.  The lift and drag 

forces are represented as L and D, respectively, given by  

 0( )2 2
0

1 1( ) ( , ( , )) ( ) ( , ( , ))
2 2

r r
L ref L refL r V C M V r S e V C M V r Sβρ α ρ α− −= =  (4.2) 

 0( )2 2
0

1 1( ) ( , ( , )) ( ) ( , ( , ))
2 2

r r
D ref D refD r V C M V r S e V C M V r Sβρ α ρ α− −= =  (4.3) 
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where the term 21 ( )
2

r Vρ is the dynamic pressure, q , and the term 0( )
0

r re βρ − − is a two-

parameter model for atmospheric density, ρ , as a function of scaled altitude.  

The aerodynamic coefficients of lift (CL) and drag (CD) are functions of Mach 

number and angle-of-attack (AoA) that are approximated by fitting X-33 data with 2nd-

order polynomials 

 2( , ( , )) 0.0005225 0.03506 0.04857 0.1577LC M V r Mα α α= − + − +  (4.4) 
 2( , ( , )) 0.0001432 0.00558 0.01048 0.2204DC M V r Mα α α= + − +  (4.5) 

where the Mach number, / ( )M V a r= , is explicitly dependent on velocity and speed-of-

sound, a, at a specific altitude.  Figure 4.1 and Figure 4.2 show the 3D-surface plots of 

the actual lift and drag data with their corresponding polynomial surface-fits respectively.  

These particular poly-fits were generated using the online tool ZunZun©, as described in 

Appendix A.  The fitting algorithm is based on a least-squares error method that allows 

the user to select specific fitting functions (e.g.,, polynomial, nonlinear, etc.) and/or 

parameters like the order of the polynomial, etc.  In addition to allowing users to visually 

inspect the fits and the statistics, it ranks numerous fits based on a user specified 

statistical metric like standard deviation.  After selecting a few polynomials of varying 

order from ZunZun, rudimentary plotting tests were conducted to compare their accuracy 

for various fixed Mach numbers over the entire alpha-range.  Although other functions 

resulted in better fits, the accuracy of the 2nd-order poly-fit was deemed satisfactory for 

M=1~6.  Also, its simplicity from an implementation and numerical perspective made it a 

logical choice for this “proof-of-concept” study.  
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Figure 4.1 Lift and Drag Coefficients: Actual and Fitted Surface Plots. 

 
 
 

 
Figure 4.2 Comparison of Actual and Fitted Surface Plots. 
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Note that a description of the tools used for the surface fits of the X-33’s large tabulated 

aero-data with additional levels of accuracy can be found in Appendix A.  The additional 

parameters in Eq. (4.1) are defined in Table 4.1. 

 

Table 4.1 Model Parameters 

Symbol Quantity Value/Unit 
m RLV Empty Mass 2455 slugs 

Sref RLV Ref. Area 1608 ft2                   

0ρ  Standard Density 0.002378 slugs/ft3 
r0 Ref. Altitude  20902900 ft                  
β  Inverse Scale Height 4.20168e-5 ft-1              

GM Earth’s Gravitational Constant  0.14076539e17 ft3/s2 
Ω  Earth’s Angular Velocity  7.2722e-5 rad/s 
Re Earth’s Radius 20925646.32 ft 

 

In accordance with the general nonlinear system, this section provided a mathematical 

model for the dynamical system.  With the dynamical model now defined, the problem 

can next be formulated in terms of the nonlinear optimal control problem (NL OCP) 

presented in Chapter. II.  

2. Problem Formulation 
Consistent with the NL OCP formulation, this section develops the state and 

control vectors, cost function, and remaining constraints. 

a. General Assumptions 

The overall objective of the reentry problem posed as an OCP is to find an 

optimal flight trajectory from LEO (or a suborbital entry altitude), through the 

atmosphere, to some intended landing site while minimizing some performance index and 

without violating any path constraints such as thermal or structural limits.  The three 

general assumptions for all problem formulations herein are that the RLV is (1) a rigid-

body, (2) a lifting-body, and (3) unpowered. 

First, a rigid-body assumption eliminates the distortional effects caused by 

a flexible body, such as elastic degrees-of-freedom needed to describe the vehicle’s 

motion and additional forces and moments due to aeroelasticity that affects structural 

bending, torsion, and flow properties (e.g.,, flutter).  Accounting for distortion usually 
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involves alterations to the aerodynamic derivatives such as adding multiplicative 

flex/rigid ratios to account for the effects of static bending.  For trajectory optimization, 

these effects are negligible.   

Second, the RLV’s body is considered to contribute substantially to the 

overall lift forces generated during reentry.  Variations in aerodynamic forces affect the 

control of a descent trajectory for a lift-producing vehicle as opposed to a strictly ballistic 

vehicle.    

Third, typical RLVs re-enter the atmosphere under no power.  Although 

some vehicles use Reaction Control System (RCS) thrusters for maneuvering at high 

altitudes where control surfaces are ineffective, this RLV reentry problem will assume no 

thrust and is therefore strictly a gliding descent trajectory. 

b. State and Control Vectors    

For this problem, the state variables consist of geographical position and 

velocity terms that together form a six-dimensional state space given by  

 6
1..6{( , , , , , ) : }L U

i i ir V x x xμ λ γ ξ == ∈ ≤ ≤X  (4.6) 

where the corresponding bounds for each state variable are 
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 (4.7) 

Likewise, the control variables are first selected based on the assumption of no command 

delays and are represented by the physical modulation of the vehicle’s AoA ( )α and bank 

angle ( )σ  such that the control space is given by  

 2
1..6{( , ) : }L U

i i iu u uα σ == ∈ ≤ ≤U  (4.8) 

and the bounds for each control variable are 
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 (4.9) 
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Without a thrust force for the reentry gliding problem, the only controllable parameters 

for the 3-DOF model are the lift and drag forces.  Typically, for symmetric flight (i.e., 

coordinated turns with zero sideslip angle, β , the lift and drag coefficients can be 

determined by the vehicle’s AoA and Mach number, a function of velocity and speed-of-

sound at a given altitude.  However, it is the physical modulation of AoA and bank angle 

(BA) that controls the vehicle’s translational motion through the atmosphere.  Therefore, 

a common control vector for the reentry problem is 2[ , ]Tα σ= ∈u  as given in Eq. (4.8)

Of course, this control vector assumes that there are no command delays (i.e., lags) and is 

sometimes referred to as “inertialess” control.  To add more realism to the problem, as 

explained in Refs. [46] and [47], the rate limits are modeled by forming a new “virtual” 

control vector mathematically expressed as 

 2[ ]Tu uα σ= ∈u  (4.10) 

Now, the original state vector must include the physical controls, α and σ , to form a 

new state vector 

 8[ ]Tr Vμ λ γ ξ α σ= ∈x  (4.11) 

Remark: For a real vehicle, or in a 6-DOF simulation, it is the control surface deflections 

that create body moments and forces to augment the wind-relative AoA, BA, and sideslip 

angle.  This is addressed by the 6-DOF models of Chapter VI.    

c. Cost and Endpoint Conditions    
Even from a sub-orbital entry altitude, the RLV must traverse a fairly 

large portion of the Earth’s surface, descend through the Earth’s atmosphere, and reach a 

designated landing site with the appropriate velocity and attitude.  In principle, it is 

possible to use the entry guidance algorithm developed in this work for autolanding as 

well; however, since the present model does not take into account aerodynamic ground 

effects, efforts are focused in guiding the RLV all the way up to a handover to autoland 

guidance.  As such, this formulation discards the traditional notion of segmented 

guidance schemes that involve such concepts as TAEM; instead, a Final Approach 

Corridor (FAC), as shown in Figure 4.3, is designed that provides the capability to 

automatically generate final endpoint conditions. 
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(1) Design of the Final Approach Corridor.   Recent efforts have 

considered other means of implementing the transition from TAEM to A/L guidance.  For 

example, Ref. [66] employs terminal conditions based on a TAEM “box” specified by 

altitude, range, and heading that exists as a latitude/longitude target that is tangent to the 

HAC.  However, in a guidance scheme developed around optimal control theory that 

specifies the final desired conditions, the additional geometry of the HAC is unnecessary.  

Simply specifying the desired vehicle attitude, heading, and velocity at the onset of the 

A/L phase along with the inclusion of the other constraints such as dynamic pressure, 

heat, and normal load, the guidance will automatically determine the necessary 

maneuvers.  As such, the following FAC-target does not use the HAC. 

The basic premise of the FAC-target design is to project all the 

final constraints onto a specific three-dimensional “box” based on any desired landing 

location (i.e., runway).  Figure 4.3 illustrates how the “box” geometry is extracted from 

the FAC.  For a simplified terminal guidance reentry problem posed in the typical TPBV 

fashion, position (i.e., latitude, longitude, and altitude) and velocity are usually specified 

as the final conditions.  Since the pre-A/L phase of flight (i.e., approach setup) is critical 

in a practical landing scenario, it is important to include the vehicle’s attitude and 

velocity (both magnitude and vertical component) in the specified final conditions.  Note 

that these values can vary depending on the vehicle characteristics and the desired 

runway.  
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Figure 4.3 Final Approach Corridor (FAC) for “Target” Conditions. 

 

For this research work, an algorithm was designed that 

automatically calculates the FAC-target for a landing at any Florida runway that’s length 

is greater than or equal to 10,000 ft.  The NASA Shuttle Landing Facility (KTTS) in 

Titusville, FL was the primary landing site and served as the example for developing the 

FAC-generation logic.  Given the runway’s center location (latitude = 28.615 deg, 

longitude = -80.6945 deg) and its heading with respect to magnetic North (150/330 deg), 

the center of the FAC is generated and used to determine the respective geometry for the 

remainder of the FAC-cube.  Figure 4.4 gives an example of how the coordinates A, B, 

and C are determined simply by trigonometric relations based soley on the runway’s 

position and orientation.  In a similar fashion, the remaining coordinates are determined 

for the 3D-cube and then mapped to a constraint set.  For the demonstation purpose of 

this research, the mapped constraints were only “box-constraints.”  A more accurate and 

effective approach is to map the FAC-region as a path constraint similar to the constraint 

modeling in Ref. [178].  For a simplified case, the center of the FAC alone can be used in 

DIDO as the final condition point.  Also note that the FAC positional information is 

assumed to be fixed;  however, the geometric parameters can be adjusted as desired.  For 
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example, increasing the FAC’s distance from the runway can allow for a shallower glide 

slope.  Note that the distance from the runway should be measured from the landing 

threshold (close to the end of the runway) and as such the length of the runway would 

become a required input parameter in order to shift the measurements from the center of 

the runway. 

L=2 nm

 
Figure 4.4 Runway Geometry used to Generate FAC. 

 

An advantage to this design is that the entire descent trajectory is based on 

achieving the final conditions and as such there is no need to switch runway approach at 

the last minute based on energy condition.  Use of the FAC in an optimal guidance and 
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control scheme will ensure that the vehicle arrives with the correct energy and eliminates 

the need for change in approach.  This can potentially improve landing safety and may be 

worth further investigations via Monte Carlo analysis.       

(2) Generating the Cost Function and the Final Conditions.  As 

mentioned, the FAC setup includes the RLV’s alignment with the runway centerline at 

the appropriate altitude, velocity, etc.; hence, the FAC manifests a projection of all the 

final conditions onto a three-dimensional cube.  The problem is then to find the control 

history that minimizes some cost function associated with intercepting an automatically 

generated FAC based on a desired landing site.  After all, the primary objective of RLV 

reentry is to safely arrive at a designated landing site with the appropriate flight 

conditions.  Note that the runway geometry for the FAC generation logic is determined 

from a pre-programmed U.S. database of runway information [179],[180] .  In addition to 

this objective cost, heat, dynamic pressure, structural loads, drag, or some other criterion 

could be minimized, and these can be modeled as path constraints.  The reentry problem 

is then formulated by appropriately defining the cost function and corresponding 

constraints.      

A general expression for a terminal guidance performance index is 

defined by the following cost function, 

 2 2 2 2
0 1 1 2 2

1
( ( ), ( ), , ) ...

n

f i i n n
i

J x u t t w s w s w s w s
=

⋅ ⋅ = Δ = Δ + Δ + Δ∑  (4.12) 

where 2 1i i
s s sΔ = − is the difference between a specific final state value, ( )i fx t , and a 

desired final condition (i.e., the “target”) for that state, and iw is the corresponding 

weighting term that can be adjusted depending on the relative importance of the 

condition.  For the models using the FAC-target in this work, the cost function can 

simply be the difference between the center of the FAC and the vehicle’s final position in 

coordinates of altitude, latitude, and longitude designated as , , ,h λ μΔ Δ Δ  respectively 

and equally weighted 1,2,3( 1)w = such that 

 ( ) ( ) ( )2 2 22 2 2( ) 1 1 1 FAC f FAC f FAC fJ h h hλ μ λ λ μ μ⋅ = ⋅Δ + ⋅Δ + ⋅Δ = − + − + − (4.13) 
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In this context, the OCP is to find the control history that 

minimizes the miss distance to the center of the FAC with the general endpoint 

(boundary) conditions 

 0 0 0 0 0 0 0 0 0( , ) : ( ) [ , , , , , ]

( , ) : ( ) [ , , , , , ]

T

T
f f f f f f f f f

e x t t h V

e x t t h V

μ λ γ ξ

μ λ γ ξ

= =

= =

x

x
 (4.14) 

Note that the initial conditions for most of the 3-DOF results are selected based on X-33 

reference trajectories generated from previous research work as depicted in Figure 4.5 

[29].  When using the FAC for terminal guidance, the final conditions represented as 

equality constraints in Eq. (4.14) are more appropriately represented as inequality 

constraints where the FAC-box defines the constraints for fh , fμ , and fλ such as  

 

H H
FAC FAC

W W
FAC FAC

L L
FAC FAC

FAC FACh h
2 2

FAC FAC
2 2

FAC FAC
2 2

f

f

f

h

μ μ μ

λ λ λ

⎛ ⎞ ⎛ ⎞− ≤ ≤ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞− ≤ ≤ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞− ≤ ≤ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (4.15) 

where L = length, W = width, and H = height of the 3D FAC-box.    
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125,000 ft = 38.1 km

167,322.8 ft = 51 km

~ 1500 m/s = 4921.3 ft/s, M=4.68

~ 1800 m/s = 5905.5 ft/s, M=5.61 ~ 2600 m/s = 8530.2 ft/s, M=8.11

~ 3400 m/s = 11154.9 ft/s, M=10.6

 
 

Figure 4.5 Selection of Various Initial Conditions from X-33 Reference 
Trajectories from [29]. 

 

When the problem is to maximize downrange ( )μ  and/or 

crossrange ( )λ , such as the case for generating landing footprints, the performance index 

is defined by the following cost functions, 

 { ( ) } or { ( ) }f fMin J Min Jμ λ⋅ = − − − ⋅ = ±  (4.16) 

The results in this chapter consist of both cost functions, Eqs. (4.13) and (4.16). 

d. Path Constraints    
In addition to the constraints on dynamics, states, controls, and endpoints 

(i.e., boundary conditions), a critical set of constraints for the reentry problem that cannot 

be neglected are those associated with structural loads (e.g.,, normal acceleration), 

dynamic pressure, and heat rate given as, 
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 2

3.15

( , , ) ( , , ) cos ( , , )sin
1( , ) ( )
2

( , ) ( ) ; 4.47228 9

zn r V L r V D r V

q r V r V

Q r V k r V k e

α α α α α

ρ

ρ

= +

=

= = −

 (4.17) 

respectively.  Thus, the following path constraints where used throughout this work  

 2

2.5g's ( , , ) 2.5g's
0 ( , ) 300lb/ft
0 ( , ) 70 BTU/ft-s

zn r V
q r V
Q r V

α−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥≤ ≤⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (4.18) 

Although the limits for the constraints are vehicle specific, those given by Eq. (4.18) are 

representative of RLVs like the X-33, X-37, and X-40.   

Now, consistent with Eq. (2.1), the specific optimal control formulation for this 

RLV reentry problem is stated as follows:  Given an initial position ( )0 0 0, ,r μ λ , velocity 

magnitude ( )0V , FPA ( )0γ , heading angle ( )0ξ , AoA ( )0α , and BA ( )0σ , find the 

control history ( ),α σ  that minimizes ( )J ⋅ , the miss distance to a predefined target or 

the max/min range, and subject to the dynamic constraints, Eq. (4.1), the initial and final 

endpoint conditions, Eq. (4.14), the state constraints, Eq. (4.7), the control constraints, 

Eq. (4.9), and the path constraints, Eq. (4.18).   

3. Solving the Optimal Control Problem 
Before numerically solving the problem and analyzing results, it is first necessary 

to apply optimal control theory and develop the key necessary optimality conditions for 

the given problem.  The proceeding theoretical results may aid in the verification of the 

numerical solution as presented in the next section.  The development of the necessary 

conditions follows the procedures as outlined in Chapter II.  As such, the first step 

requires the formulation of the Hamiltonian:    

 ( , , , ) ( , , ) ( , , )TH P x u t F x u t P f x u t= +  (4.19) 

where ( )F ⋅  is the Lagrange cost, P represents a vector of Lagrange multipliers, and ( )f ⋅  

is the vector field for the right hand side of the differential equations.  With 

 6 6
,[ , , , , , ] ; [ , , , , ]T

r V f f f f f f fP P P P P P P x r Vμ λ γ ξ μ λ γ ξ= ∈ = ∈  (4.20) 

and omitting the termsΩ − for brevity, the Hamiltonian becomes 
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 (4.21) 

 ( ) dHx RHS of dynamic equations
dP

⋅ = ⇒  (4.22) 

Note that the notation used here and in the proceeding chapter differ from that presented 

in Chapter II due to the selection of state variable notation for longitude ( )μ  and latitude 

( )λ , corresponding to the dual controls (control covector) and the dual states (costates), 

respectively.   

The Hamiltonian Minimization Condition (HMC) is based on Pontryagin’s 

Minimum Principle such that the optimal control must minimize the Hamiltonian with 

respect to control.  Since the control is subject to an inequality constraint for this 

problem, the Karush-Kuhn-Tucker (KKT) Theorem is applied by first taking the 

Lagrangian of the Hamiltonian: 

 ( , , , , ) ( , , , ) TH P q x u t H P x u t q h= +  (4.23) 

where q  is a KKT multiplier and h is the control and path constraint vector, 

[ ]: , , , ,zh n q Qα σ= .  The appropriate necessary condition is then:  

 0
T

H H h q
u u u

⎛ ⎞∂ ∂ ∂
= + =⎜ ⎟∂ ∂ ∂⎝ ⎠

 (4.24) 

and substituting Eqs. (4.21), (4.4), (4.5), the controls, and the path functions into (4.24), 

the HMC becomes  



145 

 

0

0

0

0

( ) 2
0

( )
0

( )
0

( ) 2
0

(0.0002 0.006) / 2

( 0.0010 0.035) cos / 2

( 0.0010 0.035) sin / 2 cos

( 0.0010 0.035)cos
( , )sin

/ 2
z

r r
V ref

r r
ref

r r
ref

Lr r
n ref

P e V S m

P e V S m

P e V S m

C M
q q e V S

β

β
γ

β
ξ

β
α

ρ α

ρ α σ

ρ α σ γ

α α
α α

ρ

− −

− −

− −

− −

⎡ ⎤− +⎣ ⎦
⎡ ⎤+ − +⎣ ⎦
⎡ ⎤+ − +⎣ ⎦

− +
−

⎡ ⎤+ + ⎣ ⎦

0

0

( ) 2
0

( ) 2
0

0
(0.0002 0.006)sin

( , ) cos

( 0.0005 0.035 0.049 0.16) sin / 2

( 0.0005 0.035 0.049 0.16) cos / 2 cos

0

T

D

r r
ref

r r
ref

C M

P e V M S m

P e V M S m

q

β
γ

β
ξ

σ

α α
α α

ρ α α σ

ρ α α σ γ

− −

− −

⎧
⎪
⎪
⎪
⎪
⎪
⎪ ⎡ ⎤⎪ ⎢ ⎥⎪ ⎢ ⎥ =⎪⎪ ⎢ ⎥+⎨ ⎢ ⎥
⎪ ⎣ ⎦
⎪
⎪
⎪
⎪

⎡ ⎤− − + − +⎪ ⎣ ⎦⎪
⎡ ⎤⎪ + − + − +⎣ ⎦⎪

+ =⎪⎩

(4.25) 

Also, the multiplier-constraint pair must satisfy the following KKT Complementarity 

Conditions (CC): 
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 (4.26) 

With the Lagrangian of the Hamiltonian defined, information about how the costates vary 

over time may be gained from the Adjoint Equation: 

 
HP
x

∂
− =

∂  (4.27) 

From Eq. (4.27), most of the adjoints provide no useful information except for that 

associated with the downrange distance, μ , such that 
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 (4.28) 

To determine the final value of the Hamiltonian, the Endpoint Lagrangian, given as, 
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is substituted into the Hamiltonian Value Condition (HVC): 

 ( ) 0 ( ) 0f f
f

EH t H t
t

∂
+ = ⇒ =

∂
 (4.30) 

This indicates that the final value for the Hamiltonian should be zero for this problem. 

Also, the Endpoint Lagrangian is used to determine the Terminal Transversality 

Conditions (TTC) such as 
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 (4.31) 

At this point, the TTC does not provide any useful information about the final value of 

the costates.  In addition, the Hamiltonian Evolution Equation (HEE) is used to indicate 

the nature of the Hamiltonian with respect to time such that: 

 0 0H dH
t dt

∂
= ⇒ =

∂
 (4.32) 

Here, the Hamiltonian is constant with respect to time.  Combining HEE (4.32) with 

HVC (4.30), the Hamiltonian should be zero for all time.  Although not shown for every 

specific problem, the above procedure and analysis is used throughout this study where 

applicable to verify that the numerical results satisfy the necessary conditions of 

optimality. 
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4. Results and Analysis 

a. Open-Loop Solution 
(1) Maximum Downrange Performance.  First, the maximum 

downrange is computed by minimizing the negative of the final downrange distance as 

given by Eq. (4.16) and repeated here, 

 ( ) fMin J μ⋅ = −  (4.33) 

For this example, the initial and final conditions were specified as, 

 0 0 0 0 0 0 0( , , , , , , ) (0sec,125000ft, 0 , 0 ,5413ft/s, 1.3 , 0 )

( , , ) (500ft,335ft/s, 3.0 )f f f

t h V

h V

μ λ γ ξ

γ

= −

= −
 (4.34) 

where altitude, velocity, and FPA are required for the final constraint set (i.e fixed 

variables).  The final time, longitude, latitude, and heading are unspecified (i.e., free 

variables) for the maximum range problem.  Assuming no a priori knowledge of the 

expected results, the following guess was used  

 ( , , (1000sec,90 , 35 , 90 ), )f f fft μ λ γ = − −  (4.35) 

As seen by the results, this initial guess is extremely poor.  Despite these severely bad 

guesses, the only noticeable effects are that the bank and heading angles are not exactly 

zero.  Re-running this case using a better “bad guess,” 

 ( , , (600sec,3 , 0 , 0 ), )f f fft μ λ γ =  (4.36) 

verified that the difference in performance is negligible, a difference of only 0.025% in 

the optimal downrange solution (i.e., objective function value).  Also note that when 

using a better guess, the bank and heading angles were exactly zero as expected in a 

nominal maximum downrange trajectory.  Note that the initial geographical position of 

the vehicle is on the equator and the prime-meridian.   

The following results were generated using a 20-node solution to 

bootstrap an 80-node run on a P4, 3.06 GHz, 1.05-GB RAM personal computer.  The 

corresponding CPU runtimes for the 20-node and 80-node solutions were 29 sec and 52 

sec, respectively.   
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Figure 4.6 Open-Loop States for Max DR Solution. 

 



149 

 

 
Figure 4.7 Open-Loop States for Max DR Solution. 

 

 
Figure 4.8 Open-Loop Controls for Max DR Solution. 

 

 
 



150 

 

Max DR = 1,177,842 ft       
                  (193.85 nm) 

 
Figure 4.9 Open-Loop 2D Ground Track for Max DR Solution. 

 

 

  

 
Figure 4.10 Open-Loop Path Functions for Max DR Solution 
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Table 4.2 20-Node vs. 80-Node Solution 

 20 Nodes 80 Nodes Diff. 
RunTime (sec) 29.0152 52.0156 23.0004 
Lon_f (deg) 3.2302 3.2308 0.0006 
Lat_f (deg) -0.0009 -0.0005 0.0004 
DR (ft) 1177624.3230 1177842.0000 217.6770 
DR (nm) 193.8120 193.8480 0.0360 
CR (ft) 330.1302 182.2835 147.8467 
CR (nm) 0.0543 0.0311 0.0232 

 

As shown in Figure 4.9 and listed in Table 4.2, the maximum 

downrange is approximately 193.85 nm.  Note that there is a small crossrange component 

of 0.0311 nm in this solution as a result of the extremely poor guess.  As shown in Table 

4.2, the effect of bootstrapping a low-node solution to a higher-node solution is slightly 

different answers.  Although the computation time increases approximately 23 sec, there 

is noticeable improvement in the accuracy of the final solution as illustrated later when 

comparing the error norm between the DIDO and propagated solution.  Figure 4.10 

illustrates that the path constraints were indeed satisfied throughout the flight trajectory.     

(2) Maximum Crossrange Performance.  Next, the maximum 

crossrange is computed by minimizing the final crossrange distance as given by Eq. 

(4.16) and repeated here, 

 ( ) fMin J λ⋅ =  (4.37) 

For this problem, the same initial and final conditions are specified as the maximum 

downrange case, 

 0 0 0 0 0 0 0( , , , , , , ) (0sec,125000ft, 0 , 0 ,5413ft/s, 1.3 , 0 )

( , , ) (500 ft,335ft/s, 3.0 )f f f

t h V

h V

μ λ γ ξ

γ

= −

= −
 (4.38) 

Note again that the initial longitude and latitude uses the same poor guesses.  Like the 

downrange case, the crossrange results were generated using a 20-node solution to 

bootstrap an 80-node run using the same computer.  The corresponding CPU runtimes for 

the 20-node and 80-node solutions were 19 sec and 22 sec, respectively.   
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Figure 4.11 Open-Loop States for Max CR Solution. 

 

 

 
Figure 4.12 Open-Loop States for Max CR Solution. 
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Figure 4.13 Open-Loop Controls for Max CR Solution. 

 

 

Max CR = 602,431 ft          
                   (99.15 nm)

 
Figure 4.14 Open-Loop 2D Ground Track for Max CR Solution. 
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Figure 4.15 Open-Loop Path Functions for Max CR Solution. 

 

Table 4.3 20-Node vs. 80-Node Solution 
 20 Nodes 80 Nodes Diff. 
RunTime (sec) 22.8750 26.0156 3.1406 
Lon_f (deg) 1.4998 1.5006 0.0008 
Lat_f (deg) -1.6515 -1.6525 0.0010 
DR (ft) 546790.0000 547070.0000 280.0000 
DR (nm) 89.9895 90.0362 0.0467 
CR (ft) 602070.0000 602431.0000 370.0000 
CR (nm) 99.0875 99.1515 0.0640 

 

As shown in Figure 4.14 and listed in Table 4.3, the maximum 

crossrange is approximately 99.15 nm.  As expected, the trajectory starts with the 

maximum bank angle until its heading reaches 90 deg from the equator and then flies 

straight, wings-level to maximize crossrange.  Note that the bootstrapped solution only 

takes 3.14 sec longer than 20-node solution.  Again, all the path constraints were 

satisfied.  Note how for both cases, the maximum downrange and the maximum 

crossrange, the RLV automatically performs a flare-like “pull-up” maneuver towards the 

end of the trajectory as indicated by the FPA and AoA.  This type of behavior illustrates 

how this method can be used for even the autoland guidance phase as previously 

described.  Another interesting observation is that during this flare maneuver, the 
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dynamic pressure nears its limit of 300 2lb/ft  as shown in Figure 4.15.  If a margin of 

safety is desired at this lower altitude, the dynamic pressure constraint can be tightened at 

the final condition using variable path constraint limits or an additional terminal event 

condition.     

b. Feasibility and Optimality Analysis 
The feasibility of the computational solution can be independently 

validated by comparing the DIDO results to the propagated states via a separate ODE 

Runge-Kutta propagator.  By interpolating the values of the control function, ( )iu t , at the 

LGL points and then integrating the differential dynamical equations, ( , ( ), )x f x u t t= , 

via MATLAB’s ode45 solver, a comparison of error norms can be made with the DIDO 

trajectory results.  Figure 4.16 compares the DIDO and interpolated controls.  As seen, 

there is very little difference.  Depending on the structure of the curve, the use of 

different interpolating schemes (i.e., linear, cubic, spline, etc) may be more effective.  For 

these control solutions, “cubic” interpolation works fine.  Figure 4.17 and Figure 4.18 

compare the DIDO solution with the ode45-propagated solution.  As seen, there is very 

little difference between the two solutions; hence, confirming feasibility. 

 
Figure 4.16 Interpolated Controls for Max DR Solution. 
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Figure 4.17 Comparison of DIDO and Propagated States for  

Max DR Solution. 
 
 
 

 
Figure 4.18 Comparison of DIDO and Propagated States for  

Max DR Solution. 
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Table 4.4 shows the norm error when comparing the DIDO solution, 

DIDOx , to the propagated solution, Propx  such that Prop DIDOfΔ = −x x x .  Notice that the 

difference for the altitude is the largest with an absolute error of 328.97.  By increasing 

the number of nodes from 20 to 80, the accuracy of the final altitude improves from 

331.16 ft to 2.19 ft, respectively.  

 
Table 4.4 Final State Vector Errors for 20-Node and 80-Node Solution 

  20 Nodes 80 Nodes Diff. 

fhΔ (ft) 331.1585 2.1866 328.9719

fμΔ (deg) 0.0008 -0.0001 0.0009 

fλΔ (deg) 0.0000 0.0000 0.0000 

fVΔ (ft/s) -2.0210 -0.9146 1.1064 

fγΔ (deg) -0.9939 0.2984 1.2923 

fξΔ (deg) 0.0048 -0.0001 0.0049 

 

One way to demonstrate optimality is by verifying that the necessary 

optimality conditions are satisfied.  This is performed by analytically solving some of the 

necessary conditions and then comparing the analytic results with the numerical 

solutions.  In the absence of useful costate information, Bellman’s Principal of Optimality 

can be applied to validate optimality.  Both of these optimality tests are demonstrated 

next. 

Comparing the numerical results to the theoretical analysis of the HVC, 

HEE, HMC, and TTC conditions validates the optimality of the computational solution.  

The HVC stated in the theoretical analysis indicates that the Hamiltonian should be zero 

at the final time (i.e., ( ) 0fH t = ).  From the HEE, it can be shown that the Hamiltonian is 

constant with respect to time.  Combining these two conditions, the Hamiltonian should 

be zero for all time, clearly evident in Figure 4.19.   
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Figure 4.19 Hamiltonian for Max DR Solution. 

 

Another test to confirm computational optimality is to apply Bellman’s 

Principle of Optimality.  This principle essentially states that by using any point on the 

original optimal trajectory as an initial condition to a new problem, with all other 

problem formulation parameters the same, should result in the same optimal trajectory 

with the same or better cost.  This method was used to validate the open-loop optimality 

as demonstrated in Figure 4.20. 
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Figure 4.20 Bellman Test for Max DR Solution. 

 

Similarly, the following figures are used to numerically confirm feasibility 

and optimality of the maximum crossrange solutions.  

 
Figure 4.21 Interpolated Controls for Max CR Solution. 
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Figure 4.22 Comparison of DIDO and Propagated States for  

Max CR Solution. 
 

 
Figure 4.23 Comparison of DIDO and Propagated States for 

Max CR Solution. 
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Table 4.5 shows the norm error when comparing the DIDO solution to the 

propagated solution for the maximum crossrange case.  Notice that the difference for the 

altitude is again the largest with an absolute error of 231.21.  By increasing the number of 

nodes from 20 to 80, the accuracy of the final altitude improves from approximately 

230.27 ft to 0.95 ft, respectively.  

 
Table 4.5 Final State Vector Errors for 20-Node and 80-Node Solution 

  20 Nodes 80 Nodes Diff. 

fhΔ (ft) 230.2667 -0.9468 231.2135

fμΔ (deg) -0.0015 -0.0003 0.0012 

fλΔ (deg) -0.0007 0.0001 0.0008 

fVΔ (ft/s) -3.6967 -0.1353 3.5614 

fγΔ (deg) -0.4948 -0.0078 0.4870 

fξΔ (deg) -0.3107 -0.0257 0.2850 

 
 
 

 

 
Figure 4.24 Hamiltonian for Max CR Solution. 
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Figure 4.25 Bellman Test for Max CR Solution. 

 
 

c. Robust and Intelligent Trajectory Generation 
This section gives an example of intelligent reentry guidance for an X-33-

class RLV.  The objective of the problem is to optimally plan a path from the reentry 

point (suborbital in this case) to the landing site or some designated end-point in the 

vicinity thereof.  As previously stated, the complexity of this mission is driven by the 

drastically changing environment that the vehicle undergoes while transcending the 

atmosphere.  Of primary concern are the heating rate, the dynamic pressure, and the 

structural loads placed on the vehicle as a result of hypersonic speeds through large 

altitude-density variations.  The following example demonstrates the proposed method’s 

ability to rapidly generate feasible and optimal trajectories to various landing sites in 

Florida.  Historically, as in the case of Space Shuttle guidance, it takes many man-hours 

of pre-flight planning to design such trajectories off-line and then pre-program the 

Shuttle’s flight computer with numerous waypoints and contingency trajectories.  

Although one of the most astonishing designs in aerospace history, the Space Shuttle 

lacks the autonomous capability to generate new trajectories “on-the-fly.”  This limitation 
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creates a potentially lethal safety risk and as such, has fueled tremendous efforts to 

improve the guidance and capabilities of future RLVs.  This example demonstrates how 

optimal trajectory generation injects elements of intelligence into now, autonomous path 

planning.   

Posing the final target as a reachable set defined by certain state-control 

constraints, eliminates the need for detailed trajectory design.  By simply stating this 

“reachable set” as a goal, the guidance system should be able to determine how to 

accomplish the goal and then activate appropriate steps needed to achieve that goal (i.e., 

control).  This is a form of intelligent behavior since it consists of autonomous planning 

and execution. 

First, to verify that the trajectory generation method is robust in terms of 

convergence of feasible trajectories, the initial conditions are varied while keeping all 

other parameters the same.  The FAC-target in this case is specified as the center of a 2D-

box generated from a planar-projection of the FAC as defined in Figure 4.26.  With this, 

all the final endpoint conditions corresponding to a landing approach at the Shuttle 

Landing Facility, Kennedy Space Center (KSC), Florida, are strict equalities given by  

 

 ( , , , , , ) (2000ft, 80.7112 , 28.6439 ,300ft/s, 6.0 , 60 )f f f f f fh Vμ λ γ ξ = − − −  (4.39) 
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~ 2 nm

~1000’

X

h1=1600’
h2=2400’ hf=2000’

FAC

~ 9 deg

 
Figure 4.26 2D-Projection of Final Approach Corridor (FAC) for  

Strict “Target” Conditions. 

 

The selection of initial conditions is somewhat arbitrary, but some are 

based on conditions that approximate the individual trajectory segments used by the 

Shuttle guidance system as discussed in Chapter I.  As a reference, the communication 

black-out ends at approximately 162,000 ft, the TAEM interface occurs at about 83,000 

ft, and the approach and landing phase initiates at about 10,000 ft.  Table 4.6 lists the 

various initial conditions used for this analysis.     

 

Table 4.6 Initial Conditions for Trajectories to FAC 

IC 0h  
(ft) 

0μ  
(deg) 

0λ  
(deg) 

0V  
(ft/s) 

0γ  
(deg) 

0ξ  
(deg)

0α  
(deg) 

0σ  
(deg) 

1 167323 -85 30 8530 -1.5 0 30 0 
2 167323 -84 26 8530 -1.5 0 30 0 
3 125000 -82 30 5413 -1.3 0 19 0 
4 125000 -81.5 28.4 5413 -1.3 0 19 0 
5 125000 -81.1 28.6 5413 -1.3 0 19 0 
6 85000 -81.7 29 2800 -10 0 10 0 
7 85000 -81.2 29 2800 -10 0 10 0 
8 85000 -81.8 28.64 2800 -10 0 10 0 
9 10000 -82 30 350 -5 0 5 0 

10 10000 -80.73 28.75 350 -5 -40 5 0 
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Table 4.7 provides the numerical performance for the various initial conditions.  The 

number of iterations and the corresponding CPU times are listed for the initial start-up 

nodes (20) and the bootstrapped nodes (40). 

 

Table 4.7 Performance for Various Initial Conditions 
 Cold 20 Nodes Bootstrapped 40 Nodes 

IC Iterations Time (sec) Iterations Time (sec) 
1 1326 11.2 207 6.7 
2 1408 23 216 7.2 
3 5767 49 938 15 
4 2814 14.5 242 5.6 
5 8571 32.1 4909 104 
6 1269 11.2 206 5.6 
7 5119 15.6 4569 22.5 
8 3034 18.2 236 5.6 
9 5822 29 592 30 
10 6232 32 613 33 

 

The average number of iterations and CPU times are approximately 2568 

and 23.6 sec, respectively.  The open-loop trajectories for the various initial conditions 

are shown in Figure 4.27 and Figure 4.28.  As seen, the vehicle successfully intercepts 

the center of the FAC.  Taking a closer look at the 4th trajectory, as shown in Figure 4.29, 

reveals a path that resembles typical aircraft-like operations.  This exemplifies an 

intelligent system – emulating human expert behaviors in the sense of duplicating what 

human pilots have come to consider the standard through many years of experience.  

Since the velocity for an RLV is much larger than an aircraft, it makes sense that more 

drastic energy management is required.  For this particular trajectory, the initial velocity 

and altitude are 5413 ft/s (M=5.33) and 125,000 ft, respectively.  According to this path, 

as shown by the 2D ground track in Figure 4.30, when the vehicle is within 4.23 nm of 

the runway, it is still traveling at 1924 ft/s (M=1.94).  In order to bleed-off this velocity, 

the algorithm determines that a bank-reversal is required that extends the flight away 

from the runway, then another to turn back towards the runway with just enough velocity 

to satisfy the final conditions. 
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Figure 4.27 Robustness to Variations in Initial Conditions. 

 

 

 
Figure 4.28 Alternate View to Show Convergence to FAC. 
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Figure 4.29 Open-Loop Trajectory Generated Autonomously to Intercept FAC. 

 

 

 

M=1.94

4.23 nm

M=1.94

4.23 nm

M=1.94

4.23 nm

 
Figure 4.30 2D Ground Track of Trajectory # 4. 
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The next set of plots, Figure 4.31 and Figure 4.32, are results from 

simulating an in-bound vehicle approaching the designated landing site from multiple 

latitudes (27.5 to 30.0 deg), which may be the case for a vehicle that has de-orbited from 

different inclinations.  For this case, the initial longitude is fixed over the Gulf-of-Mexico 

at -82 deg and the final conditions are the same as given in Eq. (4.39).  Like the previous 

results, all the trajectories converge to the center of the FAC, appropriately aligning the 

vehicle with the runway (heading of 150 deg). 

 

 
Figure 4.31 Robustness to Variations in Initial Conditions. 
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Figure 4.32 Alternate Zoomed View to Show Convergence to FAC. 

 

These two examples present a family of feasible trajectories via pseudo-

Monte-Carlo analysis that demonstrates the reliability of the optimization method without 

relying on TAEM or HAC (Heading Alignment Cylinder) trajectory segmentation.  Now, 

the autonomy/intelligence of the method can be demonstrated by analyzing yet another 3-

DOF example. 

For the proceeding example, the optimal trajectory control sequence for a 

series of flight paths is again generated using the 3-DOF model given by Eq. (4.1).  The 

specific initial and final conditions are given by 

 0 0 0 0 0 0 0
0( , , , , , , ) (0sec,85000 ft, 81 , 28.7 28.6 , , 10 ,5 )

( , , , , , , ) (1000sec, 2000ft, 80.7112 , 28.6439 ,300 ft/s, 6.0 , 60 )

and

f f f f f ff

t h V

t h V

μ λ γ ξ

μ λ γ ξ

= − −

= − − −

V
(4.40) 

where the initial velocity, indicated by 0V , is increased from 400 ft/s to 2900 ft/s.  Both 

scenarios initiate approximately 60 nm from the runway with the first slightly north-west 

(28.7 , 81.0 )−  and the second slightly south-west (28.6 , 81.0 )− .  Note that the initial 

altitude coincides with the TAEM interface used in Shuttle guidance.  The results, 

presented in Figure 4.33 and Figure 4.34, illustrate a good example of intelligent 

trajectory generation.  As shown by the first trajectory (dark green) with an initial 

velocity of 400 ft/s, the trajectory emulates a typical “direct, straight-in” approach 
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towards the runway.  With limited energy, the vehicle guidance system (i.e., optimal path 

planning method), intelligently chooses a path that flies directly to the runway in order to 

satisfy the required endpoint conditions.  As the initial energy increases, the trajectories 

display more maneuvers as indicated by the path with an initial velocity of 1600 ft/s.  In 

this case, the vehicle has more energy than needed and generates a trajectory that 

contains “S-turn”-like maneuvers.  As the energy becomes very large, the planned path 

actually requires the vehicle to turn away from the runway, or over-fly it, and then loop 

back around as indicated by the last two trajectories.  This is similar to the shuttle’s 

“overhead approach” procedure that is pre-programmed into the guidance system.  Here, 

the guidance system did not need to be told what to do.    

 

 

 
Figure 4.33 Intelligent Path Planning -  Autonomously Accounts for Energy by  

Transitioning from “Direct, Straight-In” to “S-Turn” to “Overhead”  
Approaches ( 0 28.7λ = ). 
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Figure 4.34 Intelligent Path Planning -  Autonomously Accounts for Energy by  

Transitioning from “Direct, Straight-In” to “S-Turn” to “Overhead”  
Approaches ( 0 28.6λ = ). 

 

The blue circles in Figure 4.34, represent the HACs used in Space Shuttle 

guidance [16].  The purpose of overlaying the HACs on the plot is to see if there are any 

similarities between the optimal trajectories generated using the PS method and the 

typical trajectories that the Space Shuttle would track based on the HAC waypoints.  For 

example, using a similar energy profile as the Space Shuttle, Figure 4.35 shows that the 

optimal trajectory generation actually seems to use the HAC, but the algorithm has no 

knowledge of such HAC.  This clearly demonstrates the power of using optimal control 

for autonomous and intelligent applications. 
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HAC

 
Figure 4.35 Example of Trajectory that Automatically Duplicates  

Effect of Space Shuttle HAC. 

 

This example clearly shows that pre-determined waypoints or reference trajectories are 

not necessarily needed, but if they were desired, this method can be used to generate such 

reference profiles needed for tracking algorithms.     

d. Footprint Generation 
In a situation that requires aborting from a planned trajectory due to 

vehicle failures, unpredicted uncertainties, or large disturbances, the guidance system 

must be capable of re-targeting another landing site, especially if reconfigurable control 

methods cannot provide adequate compensation.  As a part of the re-targeting algorithm, 

the guidance system must be capable of generating landing footprints in order to select a 

feasible landing site.  Obviously, to be of practical use, this footprint generation must be 

computed extremely fast.  In addition, the computation of the footprints assumes the 

vehicle can accurately identify and model the effects of the damage (via a health 

monitoring and failure identification sub-system).  Figure 4.36 shows the individual 

nominal 2D ground tracks that form the landing footprint for the 3-DOF model.  Note 

that the footprint is actually a polygonal approximation to the true footprint.    
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Figure 4.36 3-DOF Polygonal Footprint using Aerodynamic Approximation. 

 

The aerodynamic models for these runs use the approximations given by 

the polynomial curve-fits of Eqs. (4.4) and (4.5).  As shown, the trajectories for the left-

turn minimum downrange (Min Dr –L) and the right-turn minimum downrange (Min Dr 

–R) indicate that the vehicle will actually perform 180-degree turns, reversing direction, 

in order to decrease its minimum range.   

 

IC 
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Figure 4.37 3-DOF Polygonal Footprint using Aerodynamic Tables. 

 
 
 

 
Figure 4.38 Comparison of Nominal 3-DOF Polygonal Footprints. 

 

IC 

IC 
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Note that the accuracy of the footprint is dependent on how many trajectories are 

generated.  Ideally, the generation of these range-performance footprints would consist of 

formulating the cost functional as a weighted combination of maximum downrange and 

maximum crossrange (or minimum), a pareto-optimization problem, given by 

 ( ) ( ) (1 )( )f fJ w wμ λ⋅ = ± + − ±  (4.41) 

where fμ and fλ  are the final downrange (longitude) and crossrange (latitude), 

respectively, and w is a weighting term such that [0,1]w∈ .  The accuracy of the 

footprints depends on the step size used to vary the weighting terms from 0 to 1 such that 

the approximate footprint approaches the exact footprint in the limit as n → ∞ , where n is 

the number of iterations.  For example, repetitively solving the optimization problem 

while incrementally varying w will provide a footprint depicted in Figure 4.39 by the 

dotted line.  Note that the difference between the linear footprint segments and the curved 

segments can be on the order of 60 nm.   

 
Figure 4.39 Accuracy of Polygonal Footprint Generation. 
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This is yet another example of how fidelity can affect solution accuracy 

and potentially risks the safety of the vehicle.  On the other hand, computing a more 

accurate footprint requires more computational time; hence, faster processing speed 

and/or faster algorithms are required.  Until improvements are made in either of these 

areas, having an approximate solution is better than having no solution at all; therefore, 

the near-term approach would be to implement a curve-fit on the lower-fidelity footprint 

that will provide a better estimate of the feasible region.  Or, the polygonal 

approximations can be used to provide faster estimates of the infeasible regions.  

Consider the polygonal footprint given by Figure 4.36.  By linearly connecting the 

maximum range positions, a region is “boxed-out” as illustrated in Figure 4.40.  Any 

landing site within the polygonal footprint approximation, given by the green region, is a 

feasible option exemplified by the check-marked runway.  Any landing site outside the 

blue-hatched boundary is infeasible exemplified by the x-marked runway.  If the landing 

site is between the polygonal region and the “infeasibility boundary” then the feasibility 

is questionable, exemplified by the question-marked runway, unless additional 

trajectories are generated.     

?

X

 
Figure 4.40 3-DOF Polygonal Footprint and Infeasible Region. 
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As illustrated, real-time optimal trajectory generation is critical for on-line 

planning and re-targeting scenarios.  With online footprint determination, the vehicle’s 

guidance system can now target any field within the feasible set.    

e. Feasibility-Based Landing Site Retargeting Scenario 
The following example demonstrates the proposed method’s ability to 

rapidly generate optimal trajectories to various landing sites in Florida (FL).  This 

example implements the FAC-generation logic to automatically generate the necessary 

end-point conditions required for safe handover to autoland guidance.  By specifying the 

vehicle-specific requirement for minimum runway length, the FAC-generation algorithm 

can query a U.S. database of feasible landing sites.  In this example, a database of 

potential FL sites was predetermined based on the requirement for a runway length of at 

least 10,000 ft.  Table 4.8 lists the data for all runways that meets this requirement (data 

extracted from Ref. [180].   

 

Table 4.8 Florida Airports with Runway Length Greater than 10,000 ft. 
ID Lat  

(deg) 
Long 
 (deg) 

Elev. 
(ft) 

Rwy 
 # 

Length 
(ft) 

Width 
 (ft) Name 

PAM 30.0700000 -85.57650000 18 13L/31R 10000 200 Tyndall AFB, Panama City 
VPS 30.4833333 -86.52533330 87 12/30 12005 300 Eglin AFB, Valaparaiso 

        1/19 10012 300   
JAX 30.4940556 -81.6878611 30 7/25 10000 150 Jacksonville Intn'l Airport 
DAB 29.1799167 -81.0580556 34 7L/25R 10500 150 Daytona Beach Intn'l Airport 
TTS 28.6150000 -80.6945000 10 15/33 15000 300 NASA Shuttle Landing Facility

XMR 28.4676667 -80.5668333 10 13/31 10000 200 Cape Canaveral AFS Skid Strip
MLB 28.1027528 -80.6452569 33 9R/27L 10181 150 Melbourne Intn'l Airport 
MCO 28.4293925 -81.3089933 96 18L/36R 12005 200 Orlando Intn'l Airport 

        18R/36L 12004 200   
        17R/35L 10000 150   

TPA 27.9754722 -82.5332500 26 18R/36L 11002 150 Tampa Intn'l Airport 
PBI 26.6831606 -80.0955892 19 9L/27R 10008 150 Palm Beach Intn'l Airport 
MIA 25.7932500 -80.2905556 8 9/27 13000 150 Miami Intn'l Airport 

      8 8R/26L 10506 200   
RSW 26.5361667 -81.7551667 30 6/24 12000 150 Southwest FL Intn'l, Ft. Myers 
HST 25.4884431 -80.3836658 7 5/23 11200 300 Homestead Air Reserve Base 
NQX 24.5757014 -81.6888333 6 7/25 10000 200 Key West NAS 

 

From this list, primary and secondary targets are selected based again 

primarily on runway length.  Figure 4.41 shows the candidate FL runways with NASA 
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Shuttle Landing Facility (TTS) at KSC as primary (marked in red), Cape Canaveral Air 

Force Station Skid Strip (XMR), Eglin AFB (VPS), and Homestead Air Reserve (HST) 

as secondary (marked in blue), and the remaining runways are last resort (marked in 

black).  Note that additional work can be done to intelligently automate the process of 

selecting runways.  For example, there may be a critical tradeoff between runway length 

and distance of the site from the originally planned site.    

 

Initial Condition
X

 
Figure 4.41 Terminal Guidance to FAC for Candidate FL Runways. 
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Figure 4.42 2D Ground Tracks for Trajectories Starting from IC to  

Primary and Secondary Targets. 

 

The 2D ground tracks plotted in Figure 4.42, show that the trajectories to 

TTS, XMR, and HST are feasible, while those to VPS are not.  If for some reason the 

vehicle could not land at TTS, it could still make an approach to landing at either XMR 

or HST provided the decision point coincided with, or was prior to, the initial condition 

(IC) mark.  Notice that the feasibility was calculated for approaches from both ends of the 

runway.  This is another feature built into the FAC-generation algorithm.  Now, assume 

the onboard guidance system could generate max-range footprints fast enough.  

Overlaying the max-range footprints onto Figure 4.42, provides the information 

illustrated in Figure 4.43.  This is the picture that the onboard computer (and/or pilots if 

manned) would see if such real-time footprint generation capability existed.  Using the 

aero-tables, in this case, shrinks the landing footprint (i.e., reachable set) to the point that 

TTR and XMR are no longer reachable.  Assuming that the actual tabulated aerodynamic 
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data is perfect, using a crude aerodynamic approximation has potentially fatal results as 

indicated by the false positive of being able to reach TTS and XMR.   

 

 
Figure 4.43 2D Ground Tracks for Trajectories Starting from IC to Primary 

and Secondary Targets with Overlayed Max-Range Footprints.  
 

Ultimately, the accuracy of the footprint is highly dependent on the 

accuracy of the aerodynamic data.  This effect implies that the approximation provides a 

condition where the L/D-ratio is higher, such as less drag.  This enables a quick way of 

simulating the effects of a failed control, damaged body, or otherwise “dirty” 

configuration.  In fact, some research efforts have scaled the drag coefficients that 

essentially simulates the effects of locked control surfaces [49],[181].  Since CPU-time of 

a curve-fitted aero-approximation is generally faster, a tradeoff now exists between speed 

and accuracy. 

5. Numerical Considerations 
The primary numerical consideration with the 3-DOF trajectory generation is 

computational time.  As discussed in the motivation section of Chapter I, the GNC’s 
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ability to perform onboard, real-time computations is a critical aspect for autonomy / 

intelligence of unmanned vehicles.  The less time it takes to compute high-accuracy, 

optimal trajectories, the more capabilities are provided.  Since this research work did not 

attempt to optimize code for speed, there are a still lot of opportunities available as 

discussed in the future work chapter, Chapter VIII.   One interesting observation worth 

further exploration is that there was some computational speed trade-offs when using 

equality or inequality constraints (i.e., events with epsilon-balls) for the final target 

conditions.  From a more practical perspective, the actual position of the vehicle is 

governed by the accuracy of the sensors.  As such, there should be an epsilon-ball that 

corresponds to sensor error.  Although this work did involve some experimentation with 

epsilon-balls on initial and final conditions, the difference in results was considered 

irrelevant until implementing the feedback method.   

 

C. CLOSED-LOOP, OPTIMAL TRAJECTORY GENERATION 

1. 3-DOF Model 

a. Vehicle 

This section employs the same dynamical model as that used for the 

previous open-loop results.  Although some open-loop runs were generated with the 

tabulated aerodynamic database provided by AFRL, the proceeding feedback 

implementation requires fast computations; hence, simulations use the aerodynamic 

approximation given by Eqs (4.4) and (4.5).  It remains to be determined if the feedback 

approach works with the full table-look up model; nonetheless, as a first step in this new 

type of analysis, an analytical curve fit is implemented.  Although the vehicle model is 

the same, feedback analysis requires the infusion of uncertainties and/or disturbances.  As 

such, this work uses the inherent numerical propagation errors as the uncertainties and 

defines and integrates wind gusts into the system to simulate exogenous disturbances.   

b. Wind Gust (Disturbance) 

The most common form of an external disturbance encountered during 

atmospheric flight is the changing direction and intensity of the air mass itself (i.e., 

wind).  For this work, a constant-magnitude wind gradient approximation is used for the 

disturbance model. 
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(1) Wind Gradient Approximation.  As presented in Chapter 

III, typical wind disturbance analysis for air vehicles employs an analytical 

approximation to the wind’s flow field characteristics.  This may include the use of 

turbulence models and gradient approximations.  This study employs a simplified 

approach to model a wind gust as illustrated in Figure 4.44(b). 

 
 

(a) (b) 
 

 
Figure 4.44 Approximation of Horizontal and Vertical Wind  

Gradients Acting on Vehicle. 
 

Here, wind velocity components in the Cartesian x,y,z-directions ( ), ,x y zW W W  are 

appended to the kinematical equations such that 
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= +

= +

= +

 (4.42) 

  

For the actual implementation, the wind coordinates are transformed from Cartesian to 

spherical wind components such that [ , , ] [ , , ]x y z rW W W W W Wμ λ→ .  Also, details of the 

wind gradient are not included in the model, but rather uniform, constant components are 

used in the dynamical equations such that W  terms are zero (i.e., steady winds).  Now, 

with the wind modeled directly into the vehicle’s kinematical equations, only the 

direction and magnitude of the representative wind gust is required.  An important 

limitation of this simplified approach is that the wind only affects the vehicle’s position 

and not it’s velocity relative to the wind.  For subsonic flight, large wind disturbances 

predominantly affect the vehicle’s relative velocity and aerodynamic flight angles that 

consequently affect the aerodynamic forces and moments [26].  Despite that these effects 
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are omitted and only the effects on position are considered, this approach still provides a 

preliminary study for testing the robustness of off-nominal conditions via exogenous 

disturbances.  

Although arbitrarily selecting winds will suffice for this study, it is 

common that disturbance rejection analysis incorporates a worse case scenario in order to 

test the robustness of the proposed design.   

(2) Worse-Case Winds.  To study the effects of wind on 

atmospheric flight vehicles, it is important to consider a worst-case scenario.  A 

“nominal” wind depends on a particular region of the atmosphere, current temperature 

and pressure conditions, and geographical location. Unfortunately, for a vehicle 

transcending large vertical and horizontal distances through the atmosphere, many wind 

uncertainties exist.  Although historical data can be used to chart trends, sudden and local 

variations in wind direction and intensity (e.g., turbulence and wind shear) make wind 

prediction nearly impossible.  Because of these uncertainties and unpredictability, it is 

important to test for the worse possible case and in most design applications, to even add 

a margin of safety by exaggerating the worse-case.   

Upper air winds, or winds aloft, over the continental U.S. typically 

flow from west to east as illustrated by the “westerly” velocity vectors in Figure 4.45 

showing long-term means (1968-1996) for May (a) and December (b).  The troposphere, 

extending from the surface of the Earth to about 5-9 miles (26,400-47,520 ft) in elevation 

is the densest region of the atmosphere where most weather phenomena occurs [182].  It 

is the high upper region of the troposphere where the jet stream velocity can reach 

approximately 80 to 180 mph heading east.   
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(a) May (b) December  
Figure 4.45 Example of Wind Flow Patterns over Continental U.S. 

 at 300mb (~30,000 ft) [183]. 
 

The wind components used in this demonstration represent a 

south-easterly flow which corresponds to a north-westward heading direction with the 

addition of a large vertical downward component.  For winds aloft, a downward vertical 

component of wind is typically very small; on the order of 1-3 cm/s [184].  In localized 

storm systems this vertical component may exceed 25 m/s (> 82 ft/s) [185].  For the 

continental U.S., this direction and magnitude of flow is commonly encountered in 

hurricane-force winds typically in the vicinity of the Gulf of Mexico.  In this worse case 

scenario, a microburst or significant wind shear in the form of a column of sinking air is 

capable of generating wind speeds higher than 160 mph [186].  Since vertical windshears 

mostly occur at altitudes below 1000 ft, they are more commonly encountered during 

takeoffs and landings; however, there are cases of large vertical winds at higher altitudes. 

A relevant Space Shuttle example is the uncommon but problematic occurrence of large 

vertical wind shears during interactions between the Polar Jet and the Sub-Tropical Jet 

near the base of the jet stream (~ 25,000 to 35,000 ft) over the south-eastern U.S..  Figure 

4.46 shows the climatology over Panama City based on averaged data from 1979 to 1998.  

Likewise, Figure 4.47 shows the climatology over Cape Canaveral.  As seen in both, 

there is an appreciable amount of wind velocity component in the vertical direction. 

 

 



185 

 

 

 
(a)  Isotachs 

 
 

 
(b)  Pressure Vertical Velocity 

 
Figure 4.46 Climatology over Panama City, FL (1979-1998) Showing  

Averaged Annual Height (ft) and Wind Speed (kts) [187] .  
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(a)  Isotachs 

 

 
(b)  Pressure Vertical Velocity 

 
Figure 4.47 Climatology over Cape Canaveral, FL (1979-1998) Showing  

Averaged Annual Height (ft) and Wind Speed (kts)  [187].  

 

 

 



187 

(5) Wind Vector Selection.  Since large vertical wind shear is 

problematic near the Jet Stream, the wind vector for this study has a substantial vertical 

component.  For the given initial conditions and final conditions corresponding to landing 

at TTS (KSC), FL, the wind is applied over a period of 20 sec beginning 460 sec into the 

flight.  This time-of-flight duration (460 to 480 sec) corresponds to an altitude of 

approximately 45,000 to 30,000 ft, overlapping the high upper troposphere where the Jet 

Stream reaches its peak.  Also, this altitude corresponds to the region of transition 

(tropopause) from the upper atmosphere (stratosphere) to the lower atmosphere 

(troposphere) where a large wind shear phenomenon is likely to occur.        

Based on averaged wind data from 1979 to 1998 climatology 

charts for the south-eastern U.S. region [187], a nominal wind magnitude of about 30 kts 

is appropriate, so for this study, a magnitude of 33.25 kts was selected as the initial 

“light” wind, see Table 4.9.  For trajectory analysis, Table 4.9 shows the wind gusts 

selected for comparisons to a no wind scenario. 

 

Table 4.9 Wind Gust Selection for Trajectory Comparisons 
 Wind Components, fps Wind Magnitude 

Type Wx Wy Wz fps kts mph 
Light -30.00 15.00 -45.00 56.12 33.25 38.27 
Moderate -67.50 33.75 -101.25 126.28 74.82 86.10 
Severe -101.25 50.63 -151.81 189.37 112.20 129.12 
Exaggerated -151.88 75.94 -227.81 284.13 168.34 193.73 

 

Based on the Saffir-Simpson Hurricane Scale for wind speed 

categories [188], the worse-case scenario, labeled “exaggerated” in Table 4.9, 

corresponds to wind gust intensity in the “Cat 5” hurricane range (> 155 mph).  Note that 

although it is labeled “exaggerated” in this study, it is not unrealistic.  For example, 

Figure 4.48 shows Hurricane Katrina over the Gulf of Mexico and Figure 4.49 shows a 

sample of Katrina’s velocity vector chart at 40,000 ft at a measured 10 m/s (32.8 ft/s).  

Note the direction of the vectors are consistent with the vector directions used in this 

study.  As discussed later, results show that the vehicle’s flight guidance algorithm can 

tolerate this significant wind gust intensity. 
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Figure 4.48 Hurricane Katrina Over the Gulf of Mexico  

(Courtesy of NOAA) [189]. 
 
 

 
Figure 4.49 Hurricane Katrina Wind Velocity Vector Chart at  

40,000 ft [190].  
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Remarks: Provided by Brown, Figure 4.49 was obtained from the Air Force Weather 

Agency (AFWA) version of a mesoscale model using AFWA's 15-km CONUS window 

[184].  

(6) Determination of Maximum Wind (Disturbance Rejection 

Performance).  With testing any control algorithm, it is important to analyze the 

controller’s disturbance rejection performance and estimate what maximum disturbance 

the feedback system can tolerate until the system in no longer controllable.  For this 

study, the system’s performance is numerically tested.  In order to determine how much 

wind the vehicle can handle before the optimal feedback guidance algorithm fails to 

converge, various wind profiles are implemented with increasing magnitude.  For 

purpose of comparison, the wind direction is fixed by using the same direction cosine 

(i.e., same unit vector) and scaling the velocity magnitude, at most, by 50% increments. 

Increasing the winds until problems occur (e.g., constraint violations or non-

convergence) helps indicate the maximum allowable wind-gust magnitude.      

2. Problem Formulation 
The optimal control problem is to find the control history that minimizes the miss 

distance to the center of the FAC.  This closed-loop implementation uses an epsilon-ball 

on the final conditions.  In this case, this epsilon is based on the 3D-cube geometry of the 

FAC as previously defined in Figure 4.3.  Now, with the final conditions corresponding 

to a landing approach at the Shuttle Landing Facility (TTS, FL), the following boundary 

conditions are specified 

 
0 0 0 0 0 0 0( , , , , , , ) (0sec,167323ft, 85 ,30 ,8530.2ft/s, 1.5 ,0 )

( , , , , , ) [(2000 400ft, 80.7112 0.001371 ,

30 0.001097 ,300ft/s, 6.0 , 60 )]
f f f f f f

t h V

h V

μ λ γ ξ

μ λ γ ξ

= − −

∈ ± − ±

± − −

(4.43) 

Except for the changes with the initial and final conditions given by Eq. (4.43), all other 

constraints and model parameters are the same for the closed-loop problem formulation. 

3. Feedback Implementation 
In recent years, it has been shown using relatively high-fidelity models that PS 

methods are capable of generating real-time trajectories for reentry vehicles [83]. 

Combining this capability with a PS feedback implementation, based on new theoretical 

foundations, provides a means for real-time optimal feedback.  For entry guidance, this 
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feedback approach updates the guidance laws in a Carathèodory-π sense, as described in 

Sec. II.  This type of an update permits a longer computational time that may be exploited 

to solve high-fidelity trajectory optimization problems in real time.  

4. Results and Analysis 

a. Open-Loop Solution  
For the reentry trajectory, the open-loop terminal guidance solution takes 

only about 30 seconds to generate from an arbitrary starting point.  Although 30 seconds 

may be viewed as rapid in the context of “setup time,” this computation time can be 

reduced by at least a factor of 100 by optimizing the actual code, eliminating the 

Windows and MATLAB overhead etc. [151].  None of these computational 

enhancements were carried out because the purpose of this current work is to demonstrate 

the principles.  In any case, Figure 4.50 and Figure 4.51 show that the optimal open-loop 

control given by the ,α σ -rate modulation plotted in Figure 4.52 drives the RLV to the 

FAC-target box over a total flight time of 669.1 seconds and within the allowable 

tolerance for the desired end-point conditions.   
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Figure 4.50 PS-Computed Open-Loop Optimal States (Position). 
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Figure 4.51 PS-Computed Open-Loop Optimal States (Velocity). 
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Figure 4.52 PS-Computed Open-Loop Optimal Controls. 

 
 

Note that Figure 4.52 shows the optimal open-loop controls computed and applied to the 

3-DOF RLV model.  The difference being that the solution computed is solely based on 
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the DIDO trajectory (data points coincide with number of nodes) whereas the applied 

control is the DIDO-interpolated result that is applied to the plant dynamics.  Figure 4.53 

shows the resulting 3D flight trajectory after applying the control sequence.   
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Figure 4.53 PS-Computed Open-Loop Optimal 3D Flight Trajectory. 

 

0 100 200 300 400 500 600 700 
-0.05 

-0.04 

-0.03 

-0.02 

-0.01 

0 

0.01 

0.02 

0.03 

0.04 

0.05 

Time (secs)

H
am

ilt
on

ia
n,

 H
 

 
Figure 4.54 Open-loop Hamiltonian Evolution. 

 

The controls are optimal in the sense that they satisfy all the necessary conditions for 

optimality; hence, strictly speaking they are only extremals.  Again, combining the HVC 
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and the HEE conditions, the Hamiltonian is zero for all time, clearly evident by Figure 

4.54. Although not included here, the open-loop system response does satisfy the 

endpoint conditions within an acceptable error range. 

b. Closed-Loop Solution 
Although the previous open-loop solution results in a feasible trajectory 

and desired endpoint conditions that satisfy the necessary conditions for optimality, it 

does not account for any external disturbances as would be the case in real applications. 

To illustrate the effects of external disturbances for this reentry problem, a simulated 

wind gust was applied over a period of 20 seconds beginning at 460 seconds into the 

flight. Sensor measurement errors and parameter uncertainty can be simulated by 

assuming the role of the errors from the numerical propagation.  The effects of the wind 

on the open-loop solution are seen in Figure 4.55 to Figure 4.57. 
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Figure 4.55 Effect of Wind Gusts on Altitude for Open-Loop System. 
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Figure 4.56 Effect of Wind Gusts on Position for Open-Loop System. 
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Figure 4.57 Effect of Wind Gusts on Heading for Open-Loop System. 
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Increasing the wind-gust intensity pushes the vehicle further from the 

intended target as indicated by the “x”-mark in the insets.  Figure 4.55 shows that an 

“exaggerated” wind-gust (i.e., > Cat 5 hurricane) causes a rapid decrease in altitude of 

almost 5000 ft.  Figure 4.57 shows that even with wind gusts up to and including 

“severe,” the final heading is still within limits as indicated by arrow-marks on the inset.  

Some errors and disturbances are acceptable because the FAC-target design allows 

margin on the vehicle’s final conditions; however, with large disturbances such as the 

“exaggerated” wind gust, the system is not capable of compensating without feedback.  

The 2D ground track in Figure 4.56 is a good example of how other errors in the system 

(e.g., modeling, numerical propagation, etc) can negatively affect the trajectory.  Here, 

even the no-wind case fails to hit the FAC-target box.  It is evident that feedback is 

required to handle these uncertainties and disturbances.   

With the open-loop solution now generated, the closed-loop system is 

initiated by using the open-loop solution as a “start-up” guess.  Figure 4.58 and Figure 

4.59 shows the effects of wind gusts on the closed-loop trajectory for the variables of 

interest.  In contrast to the open-loop results, it is clear that all the closed-loop trajectories 

satisfy the final conditions, including the “exaggerated” case with a wind-gust magnitude 

of 194 mph!  Also note how the 2D ground track nicely converges to the center of the 

FAC-target in Figure 4.59.   As a reminder, the vehicle is not guided along a reference 

trajectory.  In fact, the concept of reference trajectory tracking is abandoned altogether; 

rather, the principle of autonomous real-time trajectory generation is adopted.  
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Figure 4.58 Effect of Wind Gusts on Altitude for Closed-Loop System 
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Figure 4.59 Effect of Wind Gusts on Position for Open-Loop System 
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As expected, the open-loop controls drive the model to the target 

conditions under nominal conditions but the simulation with large external disturbances 

fails to meet the requirements (i.e., end-point conditions defined by the FAC). 

The closed-loop solution does present what appears to be signs of control 

“chatter” as indicated in Figure 4.60; however, note that this is not chattering but rather 

an artifice of compressed x-axis scaling.  In this case, none of the “spikes” exceed a 

realistic rate of 5 deg/s.  This noticeable oscillatory behavior in this region is a result of 

two potential situations specific to the generated trajectory.  First, the open-loop control 

sequence is near saturation in this region which would imply that demanding more 

control will cause “chatter.”  Second, around 500 sec into the close-loop implementation, 

the computational time increases slightly as a result of less nodes being used in the 

successive “guess” structure of the feedback algorithm.  This causes an additional time 

delay that ultimately affects the control. 
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Figure 4.60 Example of Control Oscillations for Closed-Loop System. 

 

In order to demonstrate the principles described in the Modeling section, 

the effect of limiting the control rates by imposing rate constraints is investigated.  Figure 

4.61 shows an example of a similar scenario as in Figure 4.60, but without experiencing 

any rapid control oscillations; hence, demonstrating the smoothing effect of pseudo-

controls. 

Rapid change within 5 deg/s 
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Figure 4.61 Example of Modeling Rates as “Virtual” Controls to  

Smooth Control Oscillations. 
 

Results from a similar model, but without path constraints, reveals that a 

wind gust of approximately 206 ft/sec (~ 140 mph) will cause the vehicle to impact the 

earth’s surface unless the closed-loop algorithm is implemented.  Shown in Figure 4.62, 

the vehicle flying the open-loop trajectory is slammed into the ground, whereas the 

closed-loop trajectory corrects for the microburst and is able to achieve a final altitude of 

1629 ft, within the FAC-box vertical limits of 2000 400ft± .   
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Figure 4.62 Worse-Case Scenario:  “Exaggerated” Wind Gust Causing 

Earth Impact. 
 
 

Both cases (Figure 4.58 and Figure 4.62) demonstrate that a viable 

trajectory exists under hurricane-force wind gusts when implementing the optimal 

nonlinear feedback.  Also, like the case for no disturbances, it is important to note that for 

small disturbances, such as the light-wind scenario, the closed-loop trajectory 

approximately tracks the off-line open-loop reference trajectory.  This is a direct result of 

Bellman’s Principle.  Since the initial condition to the re-optimization problem lies 

approximately on the original optimal path, then the new solution will be along the same 

trajectory.  This “stability” result is a direct consequence of optimality [191].   

As with all reentry problems, it is important to ensure that the vehicle does 

not exceed limits on dynamic pressure, heating, and structural loads. A benefit of this 

constrained optimal feedback guidance is that the path constraints are not violated as 

demonstrated by Figure 4.63 and Figure 4.64.  
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Figure 4.63 Velocity vs. Altitude and Path Constraints with  

Wind Disturbance. 
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Figure 4.64 Comparison of Path Function Time Histories.  
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Depending on the specific initial conditions, the resulting flight path may 

or may not have active path constraints.  Figure 4.63 shows how a sample of closed-loop 

trajectories do not cross the plotted dynamic pressure and heat rate constraints and also 

have a margin of safety.  Note that this margin of safety can also be explicitly enforced 

via a modification to the cost function.  

Overall, the RLV vehicle can handle wind gusts approximately 7.7 % 

times its current air speed.  For this study, a vehicle traveling from 45,000-30,000 ft with 

a corresponding airspeed of 2650-1560 ft/s, can tolerate a maximum wind gust magnitude 

of approximately 205 ft/s (~ 140 mph). 

c. Computational Time 
Success of this feedback method depends heavily on relatively fast 

computation time.  A theorem that links the required computation time to the dynamics of 

the system was summarized in Chapter II.  Computation of the first off-line, open-loop 

optimal trajectory takes an average of 12 seconds and the subsequent open-loop optimal 

control updates are computed within approximately 1.2 to 9.75 seconds depending on the 

disturbance induced by the wind gusts, and the stability of the Windows environment at 

the time of run.  These trajectories were generated on a Dell Optiplex Desktop computer 

with a Pentium M, 3.40 Ghz processor, and 1.0 GB of RAM.  The feedback computation 

times are shown over the entire trajectory in Figure 4.65(a)-(e).  
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(a) No Wind 

(b) Light Wind (c) Moderate Wind 

(d) Severe Wind (e) Exaggerated Wind 
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Figure 4.65 Feedback Computation Times for Closed-Loop System. 
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For all wind disturbance cases, the average CPU computation time was 

2.78 sec.  As noted earlier, it is possible to reduce this time by a factor of 100.   

Nonetheless, 2.78 sec is quite adequate for declaring the computational speed as “real-

time” as defined by the theory developed in Ref. [148] (see Chapter II) and validated by 

the numerical experiments reported in this section.        

d. Comparing Zero Order Hold Method 

This section tests the theoretical premise that this PS-feedback 

implementation is superior to the traditional sample-and-hold type methods as discussed 

in Chapter II.  The following series of figures compare the clock-based PS-feedback 

controls used in the previous section to a zero-order hold (ZOH) method.  To simulate the 

ZOH, the control is sampled at the current time 0( )t  and then held constant until the next 

DIDO update is available.     
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Figure 4.66 Successful Cock-Based PS-Feedback Controls. 
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Figure 4.67 Clock-Based Feedback Computation Times.  
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Figure 4.68 Failed Sample-and-Hold PS-Feedback Controls. 
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Figure 4.69 Feedback Computation Times for Failed Sample-and-Hold. 
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Figure 4.70 Failed Sample-and-Hold PS-Feedback Controls with 

Added Artificial 8-second Time Delay. 
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Figure 4.71 Feedback Computation Times for Failed Sample-and-Hold  

with Added Artificial 8-second Time Delay. 
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Figure 4.72 Closed-Loop States using Clock-Based and Sample-and-Hold  

PS-Feedback Controls. 
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Figure 4.73 Closed-Loop States using Clock-Based and Sample-and-Hold  

PS-Feedback Controls with Added Artificial 8-Second Time Delay. 
 
 

Table 4.10 Comparison of Final States for Closed-Loop Solutions 
( )ftx  Desired CL Diff. ZOH Diff. ZOH + 8s Diff. ZOH @ 1s Diff. 
(ft)h  2000 +/- 400 2093.0879 93.08795 2101.6094 101.60942 -16420.15 18420.154 2089.1243 89.12430 

(deg)μ  -80.7112 +/- 0.0011 -80.7112 0.00003 -80.7106 0.00056 -80.74341 0.032 -80.7113 0.00006 
(deg)λ  28.6439 +/- 0.0014 28.6438 0.00007 28.6435 0.00042 28.68728 0.043 28.6439 0.00004 

(ft/s)V  300 +/- 1.0 299.3251 0.67490 305.2249 5.22492 233.1085 66.892 298.3039 1.69614 

(deg)γ  -6 +/- 0.02 -6.0167 0.01671 -7.1076 1.10758 -39.6843 33.684 -5.8848 0.11523 

(deg)ξ  -60 +/- 0.02 -59.9879 0.01214 -56.8464 3.15363 -59.55961 0.440 -60.0399 0.03989  
 

The closed-loop control trajectories generated by the method described in 

Chapter II (i.e., Carathéodory-π solutions) are shown in Figure 4.66 along with the open-

loop controls.  Having interacted with the plant (i.e., RK4 propagation), the closed-loop 

control trajectories are indeed different from the open-loop controls.  Comparing the 

clock-based PS-feedback controls with a sample-and-hold (SaH) PS-feedback 

implementation as shown in Figure 4.66 and Figure 4.68, respectively, reveals that the 

SaH method fails.  Even with comparable computation times, SaH does not converge to 

the correct solution; hence, verifying the effectiveness of the Carathéodory-π approach as 

well as validating the Lemma presented in Ref. [148].  The states resulting from both 

methods are compared in Figure 4.72.   Although they appear to be close, some of the 

states for SaH fail to converge to the required endpoint conditions as depicted in Table 
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4.10.  In addition, Figure 4.73 demonstrates the effects of adding an artificial time delay 

of 8 seconds making the mean computation time 10.74 sec.  By holding the clock and 

increasing the sampling interval, the required “real-time” for this system is determined to 

be approximately 10 sec.  On the other hand, by artificially reducing the computational 

time for SaH, the accuracy approaches that of the Carathéodory-π solution for a 1-second 

update delay; therefore, verifying that SaH requires more than two-times less 

computational time delay to match the accuracy of Carathéodory-π.  Or perhaps more 

importantly, this implies that a 10-times slower computer is sufficient for the new 

approach.  

Figure 4.74 and Figure 4.75 illustrates wind-gust effects on the vehicle’s 

trajectory for both open-loop and closed-loop simulations, respectively.  As seen, the 

clock-based PS-feedback method corrects for all the wind gusts and safely guides the 

vehicle to the center of the FAC.   
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Figure 4.74 Open-loop Ground Tracks with Increasing Wind-Gust  

Disturbances. 
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Figure 4.75 Closed-loop Ground Tracks with Increasing Wind-Gust  

Disturbances. 

 

5. Numerical Considerations 

a. Computational Speed 
Although the footprint determination in this chapter was simulated 

manually one range optimization case at a time, it is obvious that onboard applications 

require very fast computational speed in order to generate a footprint for use in an actual 

trajectory re-targeting scenario.  Since a low-node (~ 20 nodes), bootstrapped solution 

takes an average of approximately 2 sec for each open-loop solution, then automating the 

footprint generation would take approximately 12 sec (2 sec x 6 problems).  Again, since 

this work was ran with the Windows and MATLAB overhead and did not involve any 

modifications to the PS method or the optimization solver, nor emphasize efficient 

coding techniques to improve speed, it is conceivable that 12 sec could be reduced to 

0.12 sec; hence, real-time footprint generation.   

In order to improve the quality of the solution as well as the computational 

speed, scaling values were adjusted and readjusted as necessary.  The primary goal when 

scaling was to ensure that states, controls, and time used by the optimization solver were 

on the same order of magnitude.  Although scaling is critical, not too much time was 
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placed on determining the optimal scale factors as long as a solution was generated in a 

reasonable amount of time and passed the feasibility and optimality tests. 

b. Control Discontinuities 

In a few cases involving the closed-loop implementation, small numerical 

errors in the solution manifested as control “jumps.”  For example, Figure 4.76 illustrates 

control jumps encountered in previous models that involved the use of pseudo-controls.  

0 zooms in on the first 80 seconds of the trajectory.  The figures compare the open-loop 

solution (solid red lines) with the closed-loop solution (black asterisks) and each 

complete successive open-loop solution for each feedback iteration (blue dotted lines).  

Note that the closed-loop solution was only plotted up to approximately 80 sec in order to 

reduce clutter on the plots.     

 

 

 
 

Figure 4.76 Example of Control “Jumps” in a 3-DOF Model  
using Pseudo-Controls. 
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Figure 4.77 A Closer Look at the Control “Jumps.” 
 

 

As demonstrated in 0, more prominently for the AoA-rate given by 

" -dot"α  ( uαα = ), the controls appear to jump.  These “jumps” are partly due to the time 

it takes to compute each open-loop optimal solution since they correspond to the time 

delay between each feedback update.  Unlike the states that must start at the previous 

position vector, the controls can essentially be reset to a different value within the control 

constraint bounds.  As a consequence of optimal control theory, there is no requirement 

for the extremal control solution to each successive open-loop optimal control problem to 

start at the same exact position.  Recall that according the Bellman’s Principle, if the 

initial condition for the next run is on the original optimal path, then the solution should 

be the same; however, the initial condition for each successive run is not exactly on the 

original optimal path due to numerical errors.  As long as these perturbations from the 

optimal path remain small to within some epsilon-ball then the resulting optimal solution 

will lie approximately on the original optimal path.  This epsilon-ball can be explicitly 

specified in the problem formulation by adding tolerances on the initial state variables. 

Similarly, a remedy for the control “jumps” is to place a similar epsilon-ball on the initial 

control vector for each successive optimization problem, such as 1(0)k ku u ε+ − < , where 
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ε is some predefined tolerance.  Despite the so called control “jumps,” as long as they are 

not too large, then the solution converges to the optimal.   

c. Convergence and Infeasible Solutions 
A more serious problem is that of convergence.  If for some reason, one of 

the successive open-loop optimization steps does not converge or results in an infeasible 

solution, it can potentially crash the entire closed-loop process.  This can be addressed by 

designing additional logic into the feedback algorithm to prevent convergence issue from 

crashing the system.  Such logic may include using the previous “good” solution for 

some finite time and then attempting a new optimization step.  In the event of frequent or 

repetitive non-convergence issues, the only option may be to revert back to using the 

open-loop response for the remaining trajectory.  Of course this would only be practical if 

the remaining time-to-go is relatively short and there are minimum uncertainties and/or 

disturbances during this time.  If not, at least a “hard” crash is prevented and the 

possibility of a feasible trajectory still exists.  Figure 4.78 shows what an infeasible 

intermediate open-loop solution looks like where the next solution successfully 

converges.  At about 583 sec into the run, an infeasible solution occurs immediately 

followed by a feasible solution.  Note that the effect is similar to a control jump but to a 

much larger extent.  This can be prevented by flying the previous open-loop solution 

prior to the infeasibility. 
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Figure 4.78 Example of an Intermediate Infeasibility in the Feedback Loop. 

d. Path Constraint Limits and Infeasibilities 
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In the course of experimenting with various closed-loop scenarios, a 

potential problem was discovered involving the implementation of path constraints.  For 

a specific trajectory were the path constraints are active over some finite duration of the 

flight, it is possible that large numerical errors or external disturbances will push the 

vehicle beyond the path limits.  For the reentry problem, a primary concern is heating 

during initial entry phase when the vehicle is traveling at excessive speeds.  In most 

cases, the RLV will ride the boundary of the heating rate constraint until the velocity 

bleeds off.  For example, Figure 4.79 compares the heating rate for two trajectories (with 

and without heating rate constraint) generated using a similar 3-DOF model as used in the 

previous closed-loop implementation except that the initial conditions now begin at an 

altitude of 260,000 ft traveling at 24,000 ft/s (M=27).   

 

 
Figure 4.79 Example of Active Path Constraint and Region of Infeasibility. 

 

If during this period of active heat rate constraint an external disturbance 

is applied that pushes the actual vehicle (simulated by propagation of plant model 

dynamics) into the infeasible region shown in Figure 4.79, then the current problem 

formulation used in this closed-loop implementation will fail.  In this case, the problem 

instantaneously goes from feasible to infeasible since the next successive open-loop 

optimization problem attempts to initiate from an already infeasible position.  This is 

essentially a problem with not having enough margin for the disturbance.  Although this 
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can be perceived as more of a practical problem than a numerical problem, one remedy 

involves imposing a margin of safety by modifying the problem formulation.         

One way to make the G&C more robust to uncertainty and disturbance is 

to implement a penalty function that in effect, allows the computation of a trajectory with 

more maneuverability margin.  The ideal approach would entail a mathematical 

formulation of a “tube-guidance” problem as shown by the conceptual illustration in 

Figure 4.80.  Here, the goal is to stay in the center of the path constraints defined as a 

manifold in a higher dimensional Banach space, i.e., hyperspace.  Ultimately, the 

problem is an engineering design problem focused on determining the most effective cost 

function.    

 
Figure 4.80 Conceptual Idea of  “Tube Guidance” Approach. 

 

For example, the objective can be to minimize the maximum heating rate (or other 

similar path constraint) by using Cheby-Chev optimization, more commonly refered to as 

a “MiniMax” problem [192].  This secondary objective can be appended to the primary 

objective to form a weighted, multi-objective (pareto) optimization problem.    

 
D. CONCLUDING REMARKS 

This chapter has demonstrated a simple guidance approach, based on optimal 

control theory, that is capable of generating optimal trajectories with the potential for 

onboard, autonomous RLV applications.  In addition to autonomous, open-loop range 

maximization, path planning, and footprint generation, the presented feedback approach 

can provide an RLV capability of optimally satisfying the desired objectives  

under various disturbances and uncertainties.   
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The feedback implementation in this chapter helped support recent theoretical 

developments stipulating that real-time computation of open-loop optimal control implies 

closed-loop control.  In addition, this work verified the requirements of a sampling 

frequency for generating Carathéodory-π solutions and illustrated the detrimental effects 

of using a less sophisticated feedback control such as SaH.  It was also determined that 

due to an anti-aliasing effect of this approach, a relatively low degree of discretization 

(i.e., number of LGL-node points) is sufficient for closed-loop optimal guidance.  Thus, it 

is apparent that this technique is viable for use in optimal guidance algorithms that 

require corrective maneuvers from the perturbed trajectory.   
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V. HIGH-FIDELITY OPTIMAL TRAJECTORY TRACKING 

A. INTRODUCTION 
Despite efforts involving on-line approaches for reentry guidance and control 

(G&C), off-line reference trajectories are still used for tracking applications due to the 

perceived complexity of real-time trajectory planning.  As presented in Chapter I, 

designers have been employing various reference trajectory tracking schemes since the 

early days of space shuttle entry guidance.  Various research has addressed the reentry 

problem by using an optimal trajectory generator to solve for a reference trajectory, then 

use other inner-loop control means to track the desired trajectory [52]-[54].  In some 

cases, off-line reference trajectories are combined with on-line trajectory generators such 

as the “Optimum-Path-To-Go” methodology developed by Schierman et al. [52]. 

In a similar fashion, this chapter combines some of the approaches mentioned to 

demonstrate that a previously developed inner-loop control design, based on dynamic 

inversion (DI), can successfully track variable body-axis roll, pitch, and yaw commands 

generated from an off-line, optimal reference trajectory.  Note that although the reference 

trajectory is generated off-line, Chapter IV has shown that real-time trajectory generation 

is capable of providing optimal nonlinear feedback; hence, making the proceeding work 

viable for on-line applications. 

As an intermediate step towards solving a full, 6-DOF trajectory optimization 

problem, the overall goal of this chapter is to extend recent developments in the areas of 

optimal trajectory generation and reconfigurable control by forming a robust G&C 

architecture that combines three separately developed methods:  (1) optimal trajectory 

generation, (2) guidance command generation based on proportional-integral (PI)-loop 

closure backstepping, and (3) reconfigurable inner-loop control.  The following list 

identifies the specific objectives for this study.  

1. To see how well the inner-loop controller tracks the optimal command 

histories and remedy any problems 

2. To verify what the body-frame angular rates (P,Q,R) should be (steady-

state trim values?) since previously assumed constant in other studies 
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3. To provide initial guesses (if needed) for the 6-DOF optimal reentry 

trajectory studies using DIDO  

4. To provide a baseline for comparing 6-DOF simulation control deflection 

histories to optimal deflections computed by a 6-DOF DIDO modelTo 

provide a baseline for future studies involving a single, “integrated” 

optimal G&C architecture 

 

B. 3-DOF OPTIMAL GUIDANCE, 6-DOF RECONFIGURABLE CONTROL 
This section presents the overall G&C design architecture, the specifics about the 

3-DOF optimal trajectory generation, command generation, 6-DOF inner-loop 

reconfigurable tracking controller, and the results related to the maximum downrange and 

the maximum crossrange optimal control problems.  

1. Guidance and Control Design Architecture 
The overall G&C design architecture for this work is presented in Figure 5.1.  The 

architecture consists of a two-loop structure: (1) an outer loop that compares the actual 

angle-of-attack and the bank angle measurements with those provided from the optimal 

reference trajectory outputs and (2) an inner-loop that is designed to track the optimal 

body-rates (P,Q,R) generated from the guidance command generator.  For this work, a 

full, 6-DOF model of a RLV was employed for the inner-loop tracking simulation 

whereas the reference trajectory was generated using a 3-DOF model.  Details of the 

outer and inner loops are presented next. 
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Figure 5.1 Conceptual G&C Design Architecture. 
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2. Outer-Loop Guidance Command Generation 
This section provides some details of how the off-line optimal trajectory is 

generated with on-line viability and then converted into useful guidance commands.   

a. Off-Line, Optimal Trajectory Generation 
First, an off-line reference trajectory is generated by posing the reentry 

problem as a standard optimal control problem (OCP) and solving for the extremal 

controls using DIDO.  A reduced-order model is adequate to demonstrate the feasibility 

of the approach; therefore, the full 6-DOF equations of motion (EoM) are simplified and 

decoupled.  The outer-loop model assumes a point-mass-model over a flat, non-rotating 

earth such that the positional and translational EoM in a Cartesian “local horizontal” 

coordinate system become  

 

cos cos
cos sin
sin

( , , ) sin

( , , ) cos

( , , ) sin

x V
y V
z V

D V zV g
m

L V z g
mV V

L V z
mV

γ ψ
γ ψ
γ
α γ

α γγ

α φψ

=
=
=

= − −

= −

=

 (5.1) 

                                                                     

where x  (down-range), y  (cross-range), and z (altitude) are the vehicle’s position with 

respect to the fixed-earth reference frame, V is the velocity magnitude (i.e., total 

equivalent airspeed), γ  is the flight-path-angle (FPA), ψ  is the heading angle (HA), α is 

the angle-of-attack (AoA), φ  is the bank angle (BA), m is the vehicle’s approximate mass 

during reentry modeled as 2455 slugs (~79,000 lbs), and g is the standard gravity 

constant (32.174 ft/s).  In Eq. (5.1), the lift and drag forces are represented as L and D, 

respectively, and are given by 

 21 ( ) ( , ( , ))
2 L refL z V C M V z Sρ α=  (5.2) 

 21 ( ) ( , ( , ))
2 D refD z V C M V z Sρ α=  (5.3) 



220 

where 21600ftrefS =  is the aerodynamic reference area.  The lift and drag coefficients are 

computed using table lookup data that incorporates wing, body, and trim effects; hence, 

they are more appropriately represented as  

 0

0

*

*

( , ( , )) ( , ) ( , , ( , ))

( , ( , )) ( , ) ( , , ( , ))
L L L

D D D

C M V z C M C M M

C M V z C M C M M
δ

δ

α α α δ α

α α α δ α

= +

= +
 (5.4) 

where 
0LC represents the wing-body lift coefficient, 

0DC represents the sum of the wing-

body induced and parasitic drag coefficients, and *( , )Mδ α is the control allocation 

solution that is discussed later.  Likewise, the Mach and density are computed using table 

lookup data based on a standard 1976 atmospheric model.  See Chapter III or Ref. [46] 

for more details on the use of table lookup data for a similar model. 

The optimized controls for this problem are essentially the standard AoA 

and BA modulation, but to help compensate for command delays (i.e., lags) and to add 

more realism/fidelity to the problem, as explained in Refs. [46] and [47], the rates of 

these angles are used as “virtual” controls.  This has the benefit of allowing rate limits on 

AoA and BA which prevents unrealistic responses.  Therefore, the control vector is 

defined as 

 2[ , ]Tu u uα φ= ∈  (5.5) 

and the state vector is  

 8[ ]Tx x y z V γ ψ α φ= ∈  (5.6) 

As with any dynamical optimization problem, the cost function (objective 

function), governing EoM, path constraints, boundary conditions, and any constraints (on 

states and/or controls) must be defined.  As such, the general OCP for trajectory 

generation is fully posed in ChapterII, and repeated here for completeness,  
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where the notation τ represents the computational time as opposed to the physical time as 

described in ChapterII.  The goal for this problem is to maximize the horizontal 

downrange ( )fx  or cross-range ( )fy  under various constraints; hence, the cost function 

is 

 { [ ] } or { [ ] }f fMin J x Min J y⋅ = − − − ⋅ = ±  (5.8) 

subject to the dynamic constraints given by Eq. (5.1), the initial and final event 

conditions specified as 

  
0 0 0 0 0 0 0 0 0

0 0( (

ft
( , , , , , , , , ) (0, 0, 0,125000 ft,8417 , 1.3 ,0 , 0 ,0 )

s

), )e x t

t x y z V

t

γ ψ α φ = −

=
 (5.9) 

 ft( ( ), ) ( , ) (500ft,335 )
sf f f fe x t t z V= =  (5.10) 

 ft ft25 8.33
s sfz− ≤ ≤  (5.11) 

where sinz V γ=  and the state (5.12), path (5.13), and control (5.14) inequality 

constraints, respectively, specified as  
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 deg deg40 , 40u u
s sα φ− ≤ ≤  (5.14) 

where the path constraint terms represent the normal acceleration 

( , , ) cos ( , , ) sinzn L z V D z Vα α α α= + , the dynamic pressure 21 ( )
2

q z Vρ= , and the 

heating rate 3.15( )Q k r Vρ= with constant k based on the vehicle’s heat shield 

properties.     

b. On-Line, Optimal Trajectory Generation  
Although this work computes the optimal reference trajectory off-line and 

then extracts the appropriate signals to use in the guidance command generation 

algorithm, preliminary studies conducted concurrently with this work have indicated that 

the same model using approximated aerodynamic data can solve the problem 

approximately 85 % faster than using the table look-up data.  For example, the 3-DOF  

work presented in Chapter IV used a second-order polynomial approximation for lift and 

drag coefficients and a standard two-parameter exponential atmospheric model that 

resulted in the successful implementation of a nonlinear PS-feedback method with an on-

line, trajectory re-optimization scheme that could generate optimal trajectories 99.75 % 

faster than the same model using the table look-up data [54].  Further work is required to 

improve the accuracy of the aerodynamic approximations, but initial results look 

promising for on-line reentry applications. 

c. Command Generation via “Backstepping Architecture”            
(PI & DI) 

From the optimal trajectory, the α and φ commands are converted into the 

body-axis angular velocities (P,Q,R) to provide the desired inner-loop commands.  The 

generation of these commands is based on what is known as a “backstepping” approach 

whereby the “pseudo-commands” at each loop-closure, using PI-control and DI, drives 
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the next inner-most loop [193] .  Common loop closures may consist of an outer-most 

altitude loop, a FPA loop, and an enclosed inner-most AoA loop.   

For this experiment, the 3-DOF DIDO trajectory provides the α and φ 

commands that are then used to generate the body-rate commands (Pcmd, Qcmd, Rcmd).  For 

example, assuming only longitudinal motion, the appropriate pitch rate command is 

generated based on the following calculations.  Ignoring lateral-directional influences (for 

now), the wind-axis relation α θ γ= −  and the simplified pitch rate Q θ=  provide the 

governing EoM such that 

 Qα γ= − +  (5.15)                   

Also, the governing EoM for the FPA is  

 ( , , ) cos( )L V z g
mV V

α θγ = −  (5.16)  

Substituting Eq. (5.15) into Eq. (5.16), the resulting pitch-rate command is derived as 

 ( , , ) cos( )
cmd des

L V z gQ
mV V

α γα= + −  (5.17) 

To improve α tracking, the desired α dynamics are generated using a proportional 

feedback controller 

 ( )des cmdKαα α α= −  (5.18) 

where cmdα is the optimal α command from the 3-DOF DIDO trajectory.  Figure 5.2 

shows a block diagram that represents the computation of the optimal guidance 

commands. 
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Figure 5.2 P and Q Command Generation. 

 

Note that for the cmdQ  generation in Figure 5.2, an extra lateral term is added to account 

for lateral effects as explained in the results section.  Also, not shown in Figure 5.2 is the 

generation of the yaw command ( cmdR ) that is computed according to Ref. [168] 

assuming coordinated turns and is given by 

 sintancmd cmd
gR P

u
φα= +  (5.19)  

It is also important to note that throughout this section, the notation φ  is used for both 

BA and roll angle since they are assumed equal for this preliminary study. 

3. AFRL Reconfigurable Inner-Loop Control 
This work implemented AFRL’s 6-DOF simulation containing a reconfigurable 

inner-loop control algorithm that uses DI, control allocation, and model following 

prefilters with integrator anti-windup and reference model bandwidth attenuation.  Note 

that although not repeated here for purpose of brevity, the simulation plant model 

employs Etkin’s standard 6-DOF EoM as defined in Chapter III.  

a. Dynamic Inversion and Control Allocation 

The inner-loop control system uses DI in order to track the desired body-

frame angular velocities ( , , )des des desp q r .  The rotational dynamics for this type of vehicle 

can be written as 

 BI G Iω ω ω= − ×  (5.20) 
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where I is the moment-of-inertia tensor, [ , , ]Tp q rω = , and BG  is a vector consisting of 

the total moments acting on the vehicle with contributions from the wing-body-

propulsion system (BAE) and the control effectors ( )δ such that  

 ( , ) ( , )B BAE

BAE

L L
G G P G P M M

N N
δ

δ

ω δ
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= + = +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (5.21) 

where L, M, and N are the rolling, pitching, and yawing moments, respectively; the vector 

P  denotes a measurable or estimable quantity that can influence body rates and can 

contain variables such as AoA, sideslip, Mach number, and mass properties; and δ  is a 

vector of control surface deflections given by [ ]1 2, ,..., T
nδ δ δ δ= .  To design the DI 

control law, Eqs. (5.20) and (5.21) are put into a more standard form by defining 

( , ) ( , )BAEf P G P Iω ω ω ω− ×  such that 

 ( , ) ( , )I f P G Pδω ω δ= +  (5.22) 

The objective is to find a control law that provides direct control over ω  such 

that desω ω= ; therefore, the DI control law must satisfy 

 ( , ) ( , )desI f P G Pδω ω δ− =  (5.23) 

But, since this problem has more control effectors than control variables, a control 

allocation algorithm is required to obtain a unique solution.   

This control system employs a linear programming-based control allocator 

which obeys rate and position limits.  To implement this type of allocator, the control 

dependent portion of Eq. (5.23) must be linear in the controls.  Hence, Eq. (5.23) is 

rewritten as 

 
•

- ( , ) ( , ) ( )desI f P G P G Pδ δω ω δ δ= =  (5.24) 

In order to account for nonlinearities in the moment-deflection relationship, an intercept 

term is added to Eq. (5.24) such that 

 
•

- ( , ) ( ) ( , )desI f P G P Pδω ω δ ε δ= +  (5.25) 

Then, the final inverse control law becomes  

 1 1( , ) ( , ) ( )des f P I P I G Pδω ω ε δ δ− −− − =  (5.26) 
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For more details on this DI method and the control allocation algorithm see Refs. [39]-

[42] and references therein.  A block diagram representation of the dynamic inversion 

control law is shown in Figure 5.3.    

 

 

 

 

 

 

 

Figure 5.3 Dynamic Inversion with Control Allocation 

 

b. Model Following Prefilters 
To provide robustness to modeling errors, inversion errors, and to help 

shape the closed-loop response, prefilters were added to the DI control system as shown 

in Figure 5.4.  Previous work involving the inner-loop control designs for the X-40A 

tested two different prefilter structures: implicit and explicit [40].  For this work, an 

implicit model-following scheme was selected based on its simplicity in regards to 

having fewer gains that would ultimately need tuning.  Also, it was desired that the 

closed-inner-loop control system from desω  to ω  has the characteristics of a first-order 

response.  The implicit structure presented in Figure 5.5 provides this behavior and helps 

compensate for imperfections in the DI control law.  A closer look at this structure with 

some straight-forward block diagram algebra reveals that a stable pole/zero cancellation 

occurs.  The resulting transfer function displays the desired closed-inner-loop response 
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Note that Figure 5.5 only displays a single loop; however, the actual model implemented 

contained a loop for each of the body-axis angular rates. 
 
        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.4 Dynamic Inversion with Control Allocation and Prefilters. 
 
 
 

c. Integrator Anti-Windup and Reference Model Bandwidth 
Attenuation 

Axis saturation occurs when all control power is used on one or more 

axes.  For flight control applications, when a control surface moves at its rate limit or 

resides on a position limit, then control effector saturation occurs.  This is a necessary, 

but not sufficient, situation for axis saturation.  With axis saturation, no additional control 

power is available when requested by the control system and this should be taken into 

account by the control law.  Analysis of the control allocation inputs (ddes) and outputs 

(Bδ) can indicate axis saturation.  To prevent attempts to cancel tracking errors caused by 

axis saturation, the following integrator anti-windup law is added to reduce the 

magnitude of input signal to the integrator when axis saturation occurs. 

 ( )AW AW cmd desI K= −Bδ d  (5.28) 

where AWK  is the anti-windup gain, desd  are the desired accelerations from the control 

effectors, and cmdBδ  is the acceleration that the control allocator effectiveness model 

predicts is being produced by the effectors.  If no saturation occurs, then 

0cmd des− =Bδ d and the control law operates normally; otherwise, at least one axis is 
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saturated and the state of the prefilter integrator is reduced by the anti-windup signal.  

The anti-windup scheme is implemented as depicted in Figure 5.5.   

            

 

 

 

 

 

 

 

Figure 5.5 Implicit Model Following Prefilter Integrator Anti-Windup  
Compensation. 

 

For more details on the anti-windup integrator and its use see Ref. [39] and references 

therein. 

4. Results and Discussions 
The primary performance concerns for this work were tracking error and control 

saturation.  Of course the overall index of performance is that the cost functions for both 

the outer-loop guidance and inner-loop control agree to within an acceptable tolerance.  

As long as the desired trajectory and cost were accomplished, the tracking performance 

was only graphically confirmed.  For this work, only the max downrange and max cross-

range results are presented.   

a. Max Downrange (DR) Case 
For the case of maximizing the vehicle’s downrange distance, the 3-DOF 

optimal trajectory is generated off-line and α and φ histories are extracted for use as the 

desired guidance commands.  These command profiles are shown in Figure 5.6.   
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Figure 5.6 Max DR Commands from 3-DOF Optimal Reference Trajectory. 
 

As with most complex control system design, there were some initial 

problems that had to be resolved before the inner-loop controller could successfully track 

the guidance commands.  The less trivial problems had to do with initial transients and 

steady-state errors in the simulation. 

The first few attempts of running the simulation revealed problems with 

initial transients that took the 6-DOF controller too long to recover from, or in some 

cases, no recovery at all.  It was quickly determined that poor initial conditions specified 

in the 6-DOF simulator caused immediate control saturation; hence, leading to un-

recoverable instabilities.  To resolve this, feasible initial trim conditions were determined 

by a three-step process.  First, initial altitude and velocities were verified by picking off 

data points from a previously published reference trajectory for the same vehicle.  Next, 

the trim condition was approximated by using the standard 6-DOF EoM.  These results 

were then verified using a graphical method based on first principles.   

Assuming only longitudinal trim by ignoring later-directional motion,   a 

vehicle gliding at a constant descent will have no roll ( 0p = ) or yaw ( 0r = ) and no 

normal translation ( 0v = ).  Also, the following rates will be zero as well. 

 0u v w p q r= = = = = =  (5.29) 
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Figure 5.7 6-DOF Equations of Motion used for the Simulation’s  
Inner-Loop Controller. 

 
Therefore, the equations in Figure 5.7 reduce to 
 

 

sin 0
0

cos 0
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0
0

X mg
Y
Z mg
L M N
p q r

θ

θ

φ θ ψ

− =
=
+ =
= = =
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= = =

 (5.30) 

 

For there to be zero pitching moment, the base effects (BAE) plus the control surface 

contributions (delta) must sum to zero, 

 0 0BAEM M Mδ= ⇒ + =  (5.31) 
 
Now, assuming symmetric control surface deflections, 
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 (5.32) 

 

and the approximate angle relation γ θ α= − , the trim conditions for 

, , , , , , , andRE LE RF LF RR LRα δ δ δ δ δ δ θ are solved using MATLAB’s “fsolve” function.  

The results for at 125,000fth =  are given in Table 5.1. 

 
Table 5.1 Initial Trim Condition Results from MATLAB’s “fsolve” 

Angles (deg) u = 4146.9 ft/s u = 5118.5 ft/s 
α  19.5798 15.4031 

inREδ  -0.8112 -0.2664 

inLEδ  -0.8112 -0.2664 

outREδ  -0.8112 -0.2664 

outLEδ  -0.8112 -0.2664 

RFδ  7.8910 10.9018 

LFδ  7.8910 10.9018 

RRδ  0 0 

LRδ  0 0 
θ  -18.0830 -26.1053 
γ  -37.6628 -41.5083 

 

As a sanity check, the trimmed flap settings can be graphically confirmed 

by plotting the total pitching moment coefficients verses the total flap deflection for 

various angles of attack.  For a given angle-of-attack, the trimmed flap deflection 

corresponds to the point where the curve crosses the zero pitching moment.  As shown in 

Figure 5.8 and Figure 5.9, the trimmed flap settings correspond to those approximated by 

“fsolve” as indicated by the highlighted cells in Table 5.1.  Using these trim values as the 

initial conditions in the simulation removed the transients and provided smooth system 

response.  
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Figure 5.8 Total Pitching Moment vs. Flap Defelction @ Mach 4.6 for Various  

Angles of Attack. 
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Figure 5.9 Total Pitching Moment vs. Flap Deflection @ Mach 8.0 for Various  

Angles of Attack. 
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With the trim issue resolved, initial comparison of the PQR-guidance 

commands with the actual PQR-states revealed that the inner-loop controller was 

successfully tracking the desired values; however, when comparing the actual states to 

those of the reference trajectory, there were some unacceptable errors, especially for α.  

After carefully reviewing the data, trial-and-error gain tuning on the prefilter and anti-

windup gains, it was determined that adding an integrator in the command generation 

block (see Figure 5.10), improves the reference trajectory tracking as shown in Figure 

5.11.    
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Figure 5.10 Modification of P and Q Command Generation. 
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Figure 5.11 Comparison of AoA with and without Integrator in Command  

Generation Logic. 
 

With this addition and use of the gains in Table 5.2, the max DR results were acceptable 

with an average difference of only 2 % between the actual and commanded/desired 

values as seen in Figure 5.14 to Figure 5.17.  The cost for the optimal reference trajectory 

and the simulation were 1,515,588 ft and 1,515,852 ft, respectively, which results in only 

a 0.017 % error.   
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 5.2 Tuned Gains used in Inner-Loop Control System 
Gain Type Max DR Max CR 

Prefilter BW, P (KbP) 5.0 4.0 
Prefilter BW, Q (KbQ) 5.0 4.0 
Prefilter BW, R (KbR) 5.0 4.0 
Proportional DI (KP) 0.8 0.9 
Integral DI (KI) 0.5 0.5 
Anti-Windup, P (KAW,P) 0.2 0.1 
Anti-Windup, Q (KAW,Q) 0.2 0.1 
Anti-Windup, R (KAW,R) 0.2 0.1 
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Figure 5.12 Max DR Linear Velocities (U,V,W). 
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Figure 5.13 Max DR Angular Body-Rates (P,Q,R). 
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Figure 5.14 Max DR Euler Angles (Phi, Theta, Psi). 
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Figure 5.15 Max DR Airspeed (V) and Wind-Relative Angles  

(Alpha, Beta, Gamma). 
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Figure 5.16 Max DR Elevon Control Surface Deflections  

(Right Elevon Inboard, etc). 
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Figure 5.17 Max DR Body Flap Control Surface Deflections. 
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Figure 5.18 Max DR Rudder Control Surface Deflections. 

 
 

Figure 5.16 to Figure 5.18 show that all of the control surface deflections 

in the 6-DOF simulation remain within their respective limits as indicated by the dash-dot 

lines.  As indicated in Figure 5.17, there is only one region of body-flap control saturation 

from approximately 290-325 sec that may be related to an initial pitch down attitude just 

prior to what appears to be a steady-state trimmed condition from approximately 425-980 

sec.  Figure 5.19 shows that the anti-windup values remain approximately zero (10-15) 

throughout the flight simulation.   
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Figure 5.19 Max DR Anti-Windup Signals. 
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Figure 5.20 Max DR Comparison of Reference and Tracking Trajectory. 
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In addition to checking that the system adequately tracks the desired 

guidance commands, Figure 5.20 shows that these commands result in an acceptable 

trajectory when comparing the 6-DOF simulation and the 3-DOF reference x,y,z-state 

histories.  The corresponding forces and moments are shown in Figure 5.21 to Figure 

5.26. 
 

 
Figure 5.21 Axial Force History for Max DR Trajectory. 

 

 
Figure 5.22 Side Force History for Max DR Trajectory. 
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Figure 5.23 Normal Force History for Max DR Trajectory. 

 

 
Figure 5.24 Rolling Moment History for Max DR Trajectory. 
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Figure 5.25 Pitching Moment History for Max DR Trajectory. 

 
 

 

 
Figure 5.26 Yawing Moment History for Max DR Trajectory. 
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b. Max Crossrange (CR) Case 

For the case of maximizing the vehicle’s cross-range distance, α and φ 

histories are extracted from the off-line optimal trajectory as was done for the max DR 

case.  These command profiles are shown in Figure 5.27.   
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Figure 5.27 Max CR Commands from 3-DOF Optimal Reference Trajectory. 
 
 

For maneuvers with large bank angles, such as the max CR case, there is a 

loss of lift that must be countered in order to maintain altitude.  Typically, the elevator is 

used to increase the effective wing-body angle-of-attack; hence, increasing lift.  In short, 

the longitudinal and lateral equations of motion are strongly coupled during maneuvers 

with large bank angles.  For example, a pilot must maintain adequate backpressure on the 

yoke during steep turns to prevent loss of altitude.  To account for this in the pitch-

command ( )cmdQ  generation logic, a secant term was added as shown in Figure 5.28 to 

provide an approximate contribution from the bank angle according to the following 

relation [99] 

 sec( ) sec( )gL mg
V

φ φ= ⇒  (5.33) 
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Figure 5.28 Modification of P and Q Command Generation. 
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Similarly, the simplifying assumption that Qθ =  used for the 

backstepping architecture in section III.C is only valid when the roll angle ( )φ  is 

sufficiently small.  For the maximum CR trajectory where the roll angle may be large, the 

following relation is used cos sinQ Rθ φ φ= −  [99] such that Eq. (5.15) becomes  

 cos sinQ Rα γ φ φ= − + −  (5.34) 

and Eq. (5.17) becomes 

 ( , , ) cos( ) sin seccmd des
L V z gQ R

mV V
α γα φ φ⎡ ⎤= + − +⎢ ⎥⎣ ⎦

 (5.35) 

Of course, this still has the implied assumption that α θ γ= − which in only valid for 

“wings-level” flight, but including Eq. (5.33) helps compensate for this.   

With this modification and use of the gains in Table 5.2, the max CR 

results were acceptable with only an average difference of 2.2 % between the actual and 

commanded/desired values as seen in Figure 5.29 to Figure 5.32.  The cost for the 

optimal reference trajectory and the simulation were 664,862 ft and 671,781ft, 

respectively, which results in only a 1.04 % error.     
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Figure 5.29 Max CR Linear Body-Relative Velocities (U,V,W). 
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Figure 5.30 Max CR Angular Body-Rates (P,Q,R). 
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Figure 5.31 Max CR Euler Angles (Phi, Theta, Psi). 
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Figure 5.32 Max CR Airspeed (V) and Wind-Relative Angles  

(Alpha, Beta, Gamma). 
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Figure 5.33 Max CR Elevon Control Surface Deflections.  
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Figure 5.34 Max CR Body Flap Control Surface Deflections. 
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Figure 5.35 Max CR Rudder Control Surface Deflections. 

 
 

Similar to the max DR case, Figure 5.33 to Figure 5.35 show that all of the 

control surface deflections in the 6-DOF simulation remain within their respective limits 

as indicated by the dash-dot lines.  Again, as indicated in Figure 5.34, there is only one 

region of body-flap control saturation from approximately 240-280 sec.  Also, Figure 

5.36 shows that the anti-windup values remain approximately zero (10-15) throughout the 

flight simulation.  
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Figure 5.36 Max CR Anti-Windup Signals. 
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Figure 5.37 Max CR Comparison of Reference and Tracking Trajectory. 

 
Figure 5.37 verifies that the guidance commands result in an acceptable 

reentry trajectory when comparing the 6-DOF simulation and the 3-DOF reference x,y,z-

state histories.  The corresponding forces and moments are shown in Figure 5.38 to 

Figure 5.43. 
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Figure 5.38 Axial Force History for Max CR Trajectory/ 

 
 

 
Figure 5.39 Side Force History for Max CR Trajectory. 
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Figure 5.40 Normal Force History for Max CR Trajectory. 

 
 

 
Figure 5.41 Rolling Moment History for Max CR Trajectory. 
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Figure 5.42 Pitching Moment History for Max CR Trajectory. 

 
 
 

 
Figure 5.43 Yawing Moment History for Max CR Trajectory. 
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C. CONCLUDING REMARKS  
This section presented the successful integration of a reconfigurable inner-loop 

control law consisting of DI, control allocation, model reference prefilters, and anti-

windup integrators with an outer-loop, optimal guidance command generator.  As 

demonstrated, the inner-loop control law was capable of tracking the body-frame angular 

rates that were converted from the wind-relative α and φ modulation of the off-line 

reference trajectory.  Although the optimal trajectory generation was done off-line for 

this work, a similar model has already been demonstrated in Chapter IV to work for on-

line reentry applications using the same Legendre PS method.   

The potential drawback of the presented G&C architecture is that the inner-loop 

control system depends on various gains that require off-line tuning.  This may limit the 

system’s use for on-board autonomous applications, especially in situations involving 

unplanned maneuvers and/or flight anomalies.  Even with the added robustness provided 

by the prefilters, anti-windup mechanism, and the reconfigurable control, additional 

modifications may still be needed to handle unexpected operational conditions.  With this 

said, the next chapter omits the inner-loop controller and solves for the optimal control 

surface deflections directly.  In this sense, the inner and outer loops are integrated into a 

single loop.  As demonstrated by the 3-DOF results presented in Chapter IV, this 

eliminates the use of gains and all together providing a more robust and autonomous 

G&C system.   
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VI. 6-DOF TRAJECTORY OPTIMIZATION 

A. INTRODUCTION 
6-DOF modeling and simulation is typically used only in high-risk programs as a 

means to validate methods based on lower-order models.  Traditionally, inner and outer 

loops are decoupled such that they are actually being solved separately.  In this sense, the 

loops are decoupled.  This premise is predominantly based on the assumption that control 

inputs to the outer loops are control variables for the inner loops and that the vehicle has 

instantaneous responses from the inner loops.  In the aerospace industry, it is not 

uncommon that separate design teams independently develop guidance and control 

(G&C) methods.  For example, there may be a separate team for developing high-level 

tasks embedded in guidance algorithms such as path planning whereas lower-level; 

control algorithms are developed by another team.  In terms of classical control systems, 

the guidance is associated with an outer loop responsible for providing commands 

whereas the control is associated with an inner loop responsible for tracking the 

commands and actuating physical controls.  In terms of motion, the guidance system 

provides translational motion of the vehicle’s center-of-gravity (cg) whereas the control 

system provides rotational motion about the vehicle’s cg.  It is the goal of this work to 

explore the idea on departing from this conventional approach of separated G&C and 

adopting a more unified approach of integrated, optimal G&C. 

1. Separated G&C Architecture  
Consider a separated G&C architecture represented by the simplified block 

diagram shown in Figure 6.1.  Here, the sole purpose of the guidance block is to generate 

a reference trajectory and the corresponding guidance commands based on high-level 

goals.  Note that the guidance block as shown in Figure 6.1 is actually a combination of 

reference trajectory generation and guidance command generation as presented in the 

previous chapter.  Typically, guidance command generation is independent of the control 

because it is assumed that the control system is well designed to track commands without 

delays.  In many systems, the reference trajectories are generated off-line and then pre-

programmed into the onboard computer’s Flight Control System (FCS).  This would be 

characterized as not having a “connected” outer loop for the trajectory generation.       
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Figure 6.1 Separated G&C Architecture. 

 

Another issue is that the two loops operate at different frequencies as a direct 

result of the different time constants associated with the translational and rotational 

dynamics.  Therefore, depending on the dynamics of a specific system, the inner loop 

generally operates at much higher frequencies than the outer loop.  For example, the 

frame rates of the inner-loop FCS for most RLV prototypes operate around 50 Hz 

whereas the outer loop operates around 10 Hz. 

Under certain circumstances, it is possible that the inner-loop controller cannot 

track the guidance commands.  This situation could be a result of an infeasible trajectory, 

limited control power, rate limited actuators, control failures, vehicle damage, etc.  In the 

case of degraded inner-loop response, modification of the guidance loop gains is required 

(i.e., guidance adaptation).  Under more extreme conditions that require retargeting and 

where guidance adaptation is insufficient, onboard trajectory reshaping is required. 

In addition, employing a separated G&C architecture may potentially introduce 

problems as a result of conflicting objectives and/or design assumptions in the two loops.  

For example, Shaffer exposed a disconnect between the inner-loop control allocator and 

outer-loop guidance when solving an X-33 RLV reentry problem for footprint 

determination under nominal and control effector failure scenarios [46].  Incompatible 

cost functions between the inner-loop optimal control allocation problem and the outer-

loop optimal guidance problem caused the failed vehicle to provide better performance 

than the nominal vehicle.  This specific case was a result of naively defining the control 
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allocator cost function to minimize control surface deflections for a minimum-range case.  

Perhaps a more appropriate inner-loop cost would have been to configure the surfaces for 

maximum control surface deflections or minimum change in L/D to be consistent with 

the overall objective of minimizing downrange.  Regardless, this example pointed out the 

potential problems that can occur from the natural disconnect between the two loops.  In 

addition to the objective conflicts, there could be additional underlying sources of error.  

For example, the inner-loop control algorithm uses a piecewise linear programming 

(PLP) method to approximate the nonlinear optimal control allocation whereas the outer-

loop guidance uses a direct optimal control method to solve a full, nonlinear system 

posed in a nonlinear programming (NLP) fashion.  

2. Integrated G&C Architecture  
One way to alleviate most of these problems is by employing an architecture that 

integrates the functions of the G&C into a single loop as illustrated in Figure 6.2.  From a 

practical standpoint, this may consist of pushing the outer-loop down to a lower-level in 

the control architecture.  

*u outx

 
Figure 6.2 Integrated G&C Architecture. 

 
Most research work uses 3-DOF models since they capture the majority of the 

translational effects, using ,α β -modulation as controls; however, to emphasize attitude 

dynamics and capture translational and rotational effects, higher-order models are 

required.  As detailed in Chapter III, it is well known that model fidelity matters; 

however, it is often overlooked or taken for granted.  Demonstrated by the work of 

Fahroo et al., model fidelity has an obvious impact on performance footprints [85]-[87].  

For full 6-DOF models, the aerodynamic forces and moments are untrimmed and depend 

directly on the control surfaces.  Hence, by directly solving for the control surface 

deflections using an “integrated” G&C approach, the highly-coupled nature of 
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translational and rotational motion should be more accurately accounted for, 

consequently providing a more accurate representation of the true vehicle performance. 

Also, to help achieve the goal of intelligent, autonomous G&C, the dependence 

on time-consuming gain tuning/scheduling, trial-and-error, linearization, trim techniques, 

etc, must be removed.  In other words, less human interaction and less off-line analysis is 

required.  Solving the full, nonlinear system in its purest form using optimal control 

techniques is the approach pursued in this chapter.  In general, “integrated” 6-DOF G&C 

should accomplish the following: 

1. Reveal effects associated with decoupled inner/outer loops 

2. Remove the need for inner-loop tracking in the traditional sense; 

hence, no tracking errors nor undesired behavior such as tracking 

delays 

3. Improve “footprint” generation via more accurate solutions based on a 

model that captures the full physics of the problem without 

unnecessary assumptions or constraints 

Transitioning from the intermediary work presented in Chapter V, it is the intent 

of this chapter to explore some of these concerns by solving the full 6-DOF optimal 

control problem in the framework of the single, integrated G&C architecture.    

 

B. 6-DOF OPTIMAL TRAJECTORY GENERATION 
Before completely abandoning the optimal tracking approach as presented in 

Chapter V, it is first necessary to evaluate the suitability and effectiveness of the PS 

method in solving the full, 6-DOF optimal control problem for the reentry of the X-33 

vehicle.  This problem entails the simultaneous optimization of eight controls embedded 

in the high-fidelity (HiFi) translational and rotational equations of motion (EoM).    

1. 6-DOF Model 
Studying the effectiveness of this new “integrated” G&C approach includes the 

experimentation of using different models and problem formulations.  Instead of 
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introducing each set of equations in this section, as done for the 3-DOF chapter, it is more 

logical to present each model with its corresponding problem formulation and results. 

As in the 3-DOF problem formulation of Chapter IV, the 6-DOF problem 

formulation assumes the RLV is a rigid, lifting-body, and gliding unpowered back to 

earth from a suborbital altitude.  For each of the proceeding problem formulations, the 

objective function is either to maximize the range performance of the vehicle or minimize 

the miss distance from the center of a pre-determined final approach corridor to a 

designated landing site.  Consistent with the nonlinear OCP formulation (see Chapter II), 

the objective function is subject to both equality and inequality constraints (i.e., state, 

control, event, path) that are defined for each problem.  Although numerous problem 

formulations were studied in the course of this research, including various degrees of 

model fidelity, only the most relevant ones are presented in this section.  

2. Problem SF: Standard Flat-Earth Model 

a. Problem Formulation 

Since the original intent of this work was to investigate control surface 

failure scenarios using the 6-DOF, optimal “integrated” G&C method, the initial 

condition was selected such that spherical, rotating earth effects and variations in gravity 

would have negligible effect.  As such, this limited scope facilitated the use of the 

standard “flat-earth” equations as defined in Chapter III (see Fig. 3.13).  Recall that these 

equations assume a Cartesian “local horizon” coordinate system represented by the 

typical 3-D positional elements, (x, y, z) whereby both the translational and rotational 

equations are with respect to a body-fixed reference frame.  As detailed in Chapter III, 

the 6-DOF EoM are nonlinear and highly coupled through the various flight angle 

relations and the aerodynamic forces and moments.  For this model, the aerodynamic 

force and moment coefficients are determined from the use of an extensive X-33 

aerodynamic database.  Recall that each coefficient has a functional dependency on 

angle-of-attack ( )α , sideslip angle ( )β , Mach number ( )M  which is essentially a 

function of velocity and speed-of-sound at a given altitude, / ( )M V a h= , where h z≡ , 

and the various control surface deflections represented by the effector vector,  
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[ , , , , , , , ]
in out in outRE RE LE LE RF LF RR LRδ δ δ δ δ δ δ δ δ= .  In the component build-up form, the 

aerodynamic coefficients for the X-33 are represented as shown in Figure 6.4 and Figure 

6.4. 
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Figure 6.3 Aerodynamic Force Coefficients in the Component Build-Up Form. 
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Figure 6.4 Aerodynamic Moment Coefficients in the Component Build-Up Form. 

 

For this problem, the state and control vectors are defined as  
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8

1 8
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T
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T
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x x y z V p q r

u

u u

α β φ θ ψ
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= ∈

= = ∈

≡

 (5.36) 

 

Here the control vector assumes there are no command delays as discussed earlier.  To 

model the rates, an alternate formulation uses the “virtual” control vector  

 8[ , , , , , , , ]
RE RE LE LE RF LF RR LRin out in out

Tu u u u u u u u u uδ δ δ δ δ δ δ δ δ= = ∈  (5.37) 

This requires the modification of the original state vector to include the physical 

controls,δ , such that 

 
 20[ , , , , , , , , , , , , , , , , , , , ]

in out in out

T
E E E RE RE LE LE RF LF RR LRx x y z V p q rα β φ θ ψ δ δ δ δ δ δ δ δ= ∈ (5.38) 

 

For now, this method of using “virtual” controls (i.e., pseudo-controls), is only used if the 

original formulation results in a physically unrealizable, non-smooth control solution.   
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Now, to maximize the range, the cost function is subject to the following constraints. 

 

Dynamic Constraints, ( ( ), ( ), )x f x t u t t= : 

 
 [ , , , , , , , , , , , ] ( , , )T

E E Ex x y z V p q r f x u tα β φ θ ψ= =  (5.39) 
 

where ( , , )f x u t is the right-hand-side (RHS) of the dynamic EoM specified in Figure 

3.13 (see Chapter III).  

Path Constraints, ( ( ), ( ), )L Uh h x t u t t h≤ ≤ :  
 

 2

2.5g's ( , , ) 2.5g's
0 ( , ) 300lb/ft
0 ( , ) 60 BTU/ft-s

zn z V
q z V
Q z V

α−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥≤ ≤⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (5.40) 

 

Initial and Final Endpoint Conditions, 0 0( ( ), ( ), , )L U
f fe e x t x t t t e≤ ≤ : 

 

 
0 0 0 0

0 0 0 0

0 0 0 0

x(t ) 0 ft V(t ) 5413 ft/s p( ) 0deg/s ( ) 0deg
y(t ) 0 ft ( ) 19 deg q( ) 0deg/s ( ) -2 deg       
z(t ) 125e3 ft ( ) 0 deg r( ) 0deg/s ( ) 0 deg

t t
t t t
t t t

φ
α θ
β ψ

= = = =
= = = =
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(5.41) 

 

 
( ) 500ft

( ) 335.13ft/s
f

f

z t

V t

=

=
 (5.42) 

 
 25ft/s ( ) 8.33ft/sfz t− ≤ ≤  (5.43) 
 

with the following initial and final guesses (linear interpolation between two points) 

 



261 

 

0 f

0 f

0 f

0 f

0 f

0 f

0 f

0 f

0 f

0 f

0 f

0

x 0 ft x 1 6 ft
y 0 ft y 0 ft
z 125e3ft z 500ft
V 5413 ft/s V 335.13 ft/s

19 deg 0 deg
0 deg 0 deg

p 0deg/s p 0deg/s
q 0deg/s q 0deg/s
r 0deg/s r 0deg/s

0deg 0deg
-2 deg 0 deg
0 deg

e

α α
β β

φ φ
θ θ
ψ

= =
= =
= =
= =
= =
= =
= =
= =

= =
= =
= =
= f 0 degψ =

 (5.44) 

 

 

0 f

0 f

0 f

0 f

0 f

0 f

0 f

0 f

REi REi

REo REo

LEi LEi

LEo LEo

RF RF

LF LF

RR RR

LR LR

-0.8 deg       0 deg

-0.8deg 0deg

-0.8deg 0deg

-0.8 deg 0 deg

7.9 deg 0 deg

7.9deg 0deg

0deg 0deg

0deg 0deg

δ δ

δ δ

δ δ

δ δ

δ δ

δ δ

δ δ

δ δ

= =

= =

= =

= =

= =

= =

= =

= =

 (5.45) 

 

Note that the initial control surface deflections selected were based on a trim solution for 

equilibrium glide at h=125,000 ft, V=5413 ft/s, and α =19 deg.    

State Variable Constraints, ( )L Ux x t x≤ ≤ : 
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 (5.46) 
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and Control Variable Constraints, ( )L Uu u t u≤ ≤ : 
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 (5.47) 

 

According to Ref. [194], the X-33 design doesn’t allow for the rudder controls to become 

active until 2.5M ≤ ; therefore, the constraints are more appropriately defined as 
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i

j

i
j

δ
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− ≤ ≤ =
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 (5.48) 

 

 7,8
7,8

0 if ( , ) 2.5
30 30 if ( , ) 2.5

E

E

M V z
M V z

δ
δ

= >⎧
⎨− ≤ ≤ ≤⎩

 (5.49) 

where ( , )
( )E

E

VM V z
a z

= .  Note that some experimentation was performed using the 

rudder constraint given by Eq. (5.49); however, most of the results included in this 

dissertation omit this “hard” constraint to see how it effects the system, if at all, or if the 

physics of the problem naturally satisfies this constraint.  

b. Results and Analysis 
The following results were generated by bootstrapping from 14 to 28 

nodes.   
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Figure 6.5 Max DR Linear Body-Relative Velocities. 

 
 

 
Figure 6.6 Max DR Angular Body-Rates. 
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Figure 6.7 Max DR Euler Angles. 

 
 

 
Figure 6.8 Max DR Airspeed and Wind-Relative Flight Angles.  
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Figure 6.9 Max DR Elevon Controls. 

 
 

 
Figure 6.10 Max DR Flap Controls. 
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Figure 6.11 Max DR Rudder Controls. 

 
 

 
Figure 6.12 Max DR Cartesian Position. 

 



267 

 
 

Figure 6.13 Max DR 3D Flight Trajectory Profile. 
 
 

 
Figure 6.14 Max DR Hamiltonian Function. 
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Figure 6.15 Max DR Axial Force History. 

 
 

 
Figure 6.16 Max DR Side Force History. 
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Figure 6.17 Max DR Normal Force History. 

 
 

 
Figure 6.18 Max DR Rolling Moment History. 
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Figure 6.19 Max DR Pitching Moment History. 

 

 
Figure 6.20 Max DR Yawing Moment History. 
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As shown in Figure 6.12 and Figure 6.13, the max-range cost for this 

solution is approximately 668,500 ft (110 nm) with a total flight time of about 863 sec.  

The sideslip history in Figure 6.8 shows rapid oscillations in the beginning and during the 

second half of the trajectory.  For a maximum downrange trajectory, it is expected that 

the sideslip is zero.  This nonzero sideslip may be a sign of this variable’s sensitivity in 

the optimization problem and the underlying physics.  Similarly, it is surprising that the 

roll and heading angles are nonzero as shown in Figure 6.7.  Also noteworthy is the large 

rudder controls as shown in Figure 6.11.  Since the rudders should be ineffective for 

2.5M > , then the solution should be insensitive to these large rudder deflections in the 

first few-hundred seconds of flight.  Figure 6.16 shows large side forces during the 

approximate same time as the rudder deflections which would indicate that the rudders do 

have an effect on the solution.  This begs the question, why?  A more important question 

is why are the rudders supposed to be ineffective in the first place?  Is this restriction 

based on physics, vehicle limitations, or control effectiveness?  Answers to these 

questions require further research.  In general, the resulting forces and moments are 

consistent with those generated in Chapter V using the 6-DOF PLP allocation for the 

tracking simulation.   

The relatively long computation time of this solution, on average, ranged 

from 798 sec to 900 sec for the first 14-node solution and then from 3090 sec to 8377 sec 

(2hr:19min:37sec) for the bootstrapped 28-node solution.  Reviewing the MATLAB 

generated “Profile” revealed that about 52% of this CPU-time was spent performing 

aerodynamic calculations as indicated by the snapshot in Figure 6.21.  Again, it is 

important to keep in mind that this solution was generated using unoptimized code, 

running on legacy MATLAB software in the Windows environment with the overhead of 

other applications using valuable CPU processor speed and memory. 
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Figure 6.21 Snapshot from MATLAB “Profile Summary”. 
 

Note that according to MATLAB, 

Self time is the time spent in a function excluding the time spent in its 

child functions. Self time also includes overhead resulting from the 

process of profiling. 
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3.  Problem HF1: Homotopy Flat-Earth Model #1 

a. Problem Formulation  
This model is primarily used for troubleshooting or as a stepping-stone to 

following a “homotopy” path - a simpler model with a logical path to a more complex 

problem.  Here, the forces and moments are modeled as the controls.  A control allocation 

problem usually solves for control effectors that produce pitch, yaw, and roll moments 

and is not directly concerned with force generation.  In other words, the control allocation 

is attempting to control the wing-body attitude to generate the desired forces.  This 

problem formulation differs in that both the moments and the forces are designated as the 

controls.  The purpose of this formulation is to validate the standard equations used in the 

flat-earth model (Problem SF) and to help distinguish between the problem formulation, 

specifically the EoM, and the aerodynamic data as to the root cause of any problems.  

The control vector and the corresponding control variable bounds, respectively, are 

defined as  

 6[ , , , , , ]X Y Z L M N= ∈u  (5.50) 
 

 

200000 0 (lb)
1000 1000 (lb)
300000 100000 (lb)
1000 1000 (ft-lb)
20000 20000 (ft-lb)
1000 1000 (ft-lb)

X
Y

Z
L
M

N

− ≤ ≤
− ≤ ≤
− ≤ ≤
− ≤ ≤
− ≤ ≤
− ≤ ≤

 (5.51) 

where the boundary limits for each control variable were selected based on the 

approximate minimum and maximum values observed in the 6-DOF simulation from the 

previous section.   

b. Results and Analysis 

These results were generated by bootstrapping from 20 to 80 nodes.  

Recall that this model did not rely on the aerodynamic model; therefore, substantially 

faster computational times facilitate the use of higher node solutions. The following 

figures present some of the results from this solution. 
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Figure 6.22 Max DR Force Controls. 

 
 

 
Figure 6.23 Max DR Moment Controls. 
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Figure 6.24 Max DR Cartesian Position. 

 

 
Figure 6.25 Max DR 3D Flight Trajectory Profile. 
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Figure 6.26 Max DR Vertical Sink Rate Profile. 

 

 
Figure 6.27 Max DR Hamiltonian Function. 

 
 

The results from this model are not physically realistic in the sense that the 

homotopy controls, the forces in this case, are not limited by atmospheric nor 

aerodynamic effects.  As such, the maximum downrange is essentially unlimited as 

indicated by the excessively large value of 4,000,000 ft (658 nm) in Figure 6.24 and 

Figure 6.25.  The importance of these results, although not realistic, is to verify that the 

computational time for the aerodynamic database and the corresponding dynamics are 

independent of any other modeling issues.  For this run, the 80-node solution was 
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generated in approximately 69 sec, a significant difference compared to the 28-node 

solution of the previous model that took 3090 sec.     

4. Problem HF2: Homotopy Flat-Earth Model #2 

a. Problem Formulation 
This problem formulation pushes the controls down to the next level, 

defining them as the aerodynamic force and moment coefficients, as opposed to just the 

forces and moments as in the previous case.  The control vector and the corresponding 

control variable bounds, respectively, are succinctly defined as  

 6[ , , , , , ]A Y N l m nC C C C C C= ∈u  (5.52) 
 

 

0.040 0.320
0.170 0.170
0.360 1.630
0.073 0.073
0.040 0.050
0.030 0.030

A

Y

N

l

m

n

C
C
C
C
C
C

− ≤ ≤
− ≤ ≤
− ≤ ≤

− ≤ ≤

− ≤ ≤

− ≤ ≤

 (5.53) 

According to Eqs. (3.82)-(3-84), the corresponding upper and lower bounds on the lift, 

drag, and side force coefficients should coincide with the maximum and minimum values 

given in Eq. (5.53).  This is verified by solving subsequent minimization/maximization 

problems.  For example, the maximum lift coefficient is found by solving  

 

sin cos
. . 10 50

0.040 0.320
0.360 1.630

L A N

A

N

Max C C C
s t

C
C

α α
α

= − +⎧
⎪ − ≤ ≤⎪
⎨ − ≤ ≤⎪
⎪ − ≤ ≤⎩

 (5.54) 

As expected, the solution for this problem and corresponding problems for drag and side 

force coefficients results in   

 
0.360 1.63
0.040 0.320
0.170 0.170

L

D

S

C
C
C

− ≤ ≤
− ≤ ≤
− ≤ ≤

 (5.55) 

Note that the values used in Eq. (5.53) were taken from the X-33 aerodynamic database 

without regard to the Mach-alpha space; rather, max/min values were extracted 

irrespective of the flight condition.  As a result of this, the values do not accurately reflect 
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the nominal lift and drag as confirmed from surface plots explicitly depending on Mach 

and alpha.  According to the lift and drag plots in Chapter IV, the data indicates the 

max/min  lift and drag coefficients are  

 min max

min max

0.2370; 0.8711

0.0953; 0.8744
L L

D D

C C

C C

= − =

= =
 (5.56) 

Given this discrepancy, it is more appropriate to add the following path constraints 

 
min max

min max

min max

sin cos

cos cos sin sin cos

cos sin cos sin sin

L A N L

D A Y N D

S A Y N S

C C C C

C C C C C

C C C C C

α α

α β β α β

α β β α β

≤ − + ≤

≤ − + ≤

≤ − − ≤

 (5.57) 

 

b. Results and Analysis 

Similar to the previous case, these results were generated by bootstrapping 

from 20 to 80 nodes.  Taking approximately the same computational time, these results 

did account for density-altitude effects since the controls were the aerodynamic 

coefficients as opposed to the forces in the previous section. 

 

 
Figure 6.28 Max DR Linear Body-Relative Velocities. 
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Figure 6.29 Max DR Angular Body-Rates. 

 
Figure 6.30 Max DR Euler Angles. 
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Figure 6.31 Max DR Airspeed and Wind-Relative Angles.    

 
 

 
Figure 6.32 Max DR Force Coefficient Controls. 
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Figure 6.33 Max DR Moment Coefficient Controls. 
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Figure 6.34 Max DR Force History (Axial, Side, Normal). 
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Figure 6.35 Max DR Rolling Moment History. 

 
 

 
Figure 6.36 Max DR Pitching Moment History. 
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Figure 6.37 Max DR Yawing Moment History. 

 
 

 
Figure 6.38 Max DR Cartesian Position. 
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Figure 6.39 Max DR 3D Flight Trajectory Profile. 

 
 
 

 
Figure 6.40 Max DR Vertical Sink Rate Profile. 
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Figure 6.41 Max DR Hamiltonian Function. 

 
 

As expected, Figure 6.32 shows that the solution tends to minimize the 

axial force coefficient and the side force coefficient, while maximizing the normal force 

coefficient.  Similar to the previous solution and for the same reason, these results also 

give unrealistic maximum downrange performance as indicated in Figure 6.38 and Figure 

6.39 with a downrange of 2,000,000 ft (329 nm).   

5. Problem SS: Standard Spherical-Earth Model 

a. Problem Formulation 
As described in Chapter III, this model employs a North-East-Down 

(NED) coordinate system with the equations expressed in a mixed wind-body reference 

frame.  That is, the translational equations are with respect to the velocity or wind relative 

reference frame and the rotational equations are with respect to the body-fixed reference 

frame.  As such, an important aspect of this model is that the translational and rotational 

equations are coupled strictly by the aerodynamics via the flight angles, α and β .  Since 

these angles are not explicit state variables as in the standard equations, Problem SF, they 

must be calculated in order to obtain the aerodynamic coefficients.  This model uses the 

approximate flight angle relationships as discussed in Chapter III, in addition to imposing 
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the requirement for coordinated turns, i.e., zero sideslip angles.  This will be useful for 

comparing to the 3-DOF solutions since it assumes zero sideslip as well.  In addition, this 

model uses a spherical, rotating earth with an inverse-squared gravitational field.  

 For this problem, the state and control vectors are defined as  

 

12

8

1 8

[ , , , , , , , , , , , ]
[ , , , , , , , ]

[ ,..., ]
in out in out

T

T
RE RE LE LE RF LF RR LR

x h V p q r
u

u u

μ λ γ ξ φ θ ψ

δ δ δ δ δ δ δ δ δ

= ∈

= = ∈

≡

 (5.58) 

 

Again, the control vector assumes there are no command delays.  To maximize the range, 

the cost function is subject to the following constraints. 

 
Dynamic Constraints, ( ( ), ( ), )x f x t u t t= : 
 
 [ , , , , , , , , , , , ] ( , , )Tx h V p q r f x u tμ λ γ ξ φ θ ψ= =  (5.59) 
 

where ( , , )f x u t is the right-hand-side (RHS) of the dynamic EoM specified in Figure 

3.14 (see Chapter III).  

Path Constraints, ( ( ), ( ), )L Uh h x t u t t h≤ ≤ :  
 

 2

2.5g's ( , , ) 2.5g's
0 ( , ) 300lb/ft
0 ( , ) 60 BTU/ft-s

zn h V
q h V
Q h V

α−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥≤ ≤⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (5.60) 

 
Initial and Final Endpoint Conditions, 0 0( ( ), ( ), , )L U

f fe e x t x t t t e≤ ≤ : 
 

 
0 0 0 0

0 0 0 0

0 0 0 0

h(t ) 125,000 ft V(t ) 5413 ft/s p( ) 0deg/s ( ) 0deg
(t ) 0 deg ( ) -1.3 deg q( ) 0deg/s ( ) 18 deg      
(t ) 0 deg ( ) 0 deg r( ) 0deg/s ( ) 0 deg

t t
t t t
t t t

φ
μ γ θ
λ ξ ψ

= = = =
= = = =
= = = =

(5.61) 

 

 

( ) 500ft

( ) 335.13ft/s

( ) 3deg

f

f

f

h t

V t

tγ

=

=

= −

 (5.62) 
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Note that the final altitude and final FPA correspond to a final sink rate of 

sin 17.54ft/sV γ = − .   

 
Initial and Final Guesses: 
 

 

0 f

0 f

0 f

0 f

0 f

0 f

0 f

0 f

0 f

0 f

0 f

125,000 ft 500 ft
0 deg 0 deg
0deg 0deg
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0 deg 0 deg
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r 0deg/s r 0deg/s

0deg 0deg
18 deg 0 deg

h h
μ μ
λ λ

γ γ
ξ ξ

φ φ
θ θ
ψ

= =
= =
= =
= =
= = −
= =
= =
= =

= =
= =
= =

0 f0 deg 0 degψ= =

 (5.63) 
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 (5.64) 

 
State Variable Constraints, ( )L Ux x t x≤ ≤ : 
 

 
0

0 ft 4 5 ft 30deg /s 30deg /s
0deg 10 deg 30deg /s 30deg /s

4 deg 4deg 30deg /s 30deg /s
1.0ft/s 2* ( ) ft/s 90deg 90deg

80deg 80deg 89deg 89deg
180deg 180deg 180deg 180deg

h e p
q
r

V V t

μ
λ

φ
γ θ
ξ ψ

≤ ≤ − ≤ ≤
≤ ≤ − ≤ ≤

− ≤ ≤ − ≤ ≤
≤ ≤ − ≤ ≤

− ≤ ≤ − ≤ ≤
− ≤ ≤ − ≤ ≤

 (5.65) 
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and Control Variable Constraints, ( )L Uu u t u≤ ≤ : 
 

 
7

8

30deg 30deg 1, 2,3, 4
15deg 26 deg 5,6

60deg 30deg
30deg 60deg

i

j

i
j

δ
δ

δ
δ

− ≤ ≤ =
− ≤ ≤ =

− ≤ ≤
− ≤ ≤

 (5.66) 

 

In addition to the regular path constraints of heating rate, dynamic 

pressure, and normal acceleration, the approximate flight angle relationships,  

 
α θ γ
β ξ ψ

= −
= −

 (5.67) 

are bounded by implementing the corresponding path constraints 

 
( )
( )

10 , , 50

1.5 , , 1.5

t

t

α θ γ

β ξ ψ

− ≤ ≤

− ≤ ≤
 (5.68) 

 However, since this model assumes coordinated turns by setting ( ) 0tβ =  for all time, 

0[ , ]ft t t∈ , the constraint on sideslip angle is omitted for now. 

b. Results and Analysis 
The following results were generated by bootstrapping from 14 to 28 

nodes which takes on average about 800 sec to 1800 sec compared to the 3090 sec to 

8377 sec for the model using the standard EoM (Problem SF).     
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Figure 6.42 Max DR Elevon Controls. 

 
 

 
Figure 6.43 Max DR Flap Controls. 
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Figure 6.44 Max DR Rudder Controls. 

 
 

 
Figure 6.45 Max DR Position Response. 

 



292 

 
Figure 6.46 Max DR Velocity Response. 

 
 
 

 
Figure 6.47 Max DR Body Rate Response (degrees). 
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Figure 6.48 Max DR Body Rate Response (Radians). 

 
 

 
Figure 6.49 Max DR Euler Angle Response. 
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Figure 6.50 Max DR Aero Angle Response. 
 

 
 

 
Figure 6.51 Max DR 2D Ground Track. 
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Figure 6.52 Max DR 3D Flight Trajectory Profile. 
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Figure 6.53 Max DR Path Constraint Functions. 

 
 
 

 
Figure 6.54 Max DR Sink Rate Profile. 
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Figure 6.55 Max DR Axial Force History. 

 
 

 
Figure 6.56 Max DR Side Force History. 
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Figure 6.57 Max DR Normal Force History. 

 
 

 

 
Figure 6.58 Max DR Rolling Moment History. 
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Figure 6.59 Max DR Pitching Moment History. 

 
 
 

 
Figure 6.60 Max DR Yawing Moment History. 
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Figure 6.61 Max DR Hamiltonian Function. 

 

As shown in Figure 6.45, Figure 6.51, and Figure 6.52,  the max-range 

cost for this solution is approximately 2.908 deg in longitude (~174.48 nm) with a total 

flight time of approximately 992 sec.  This solution not only computes approximately 

74% faster than the standard model, but also provides a better cost.  Figure 6.50 verifies 

that the bank angle and sideslip angle are approximately zero for the duration of the 

trajectory.         

6. Problem MS: Modified Spherical-Earth Model 

a. Problem Formulation 
Similar to the standard spherical-earth model (Problem SS), a modified 

spherical-earth model (Problem MS) is employed.  The only two differences in this 

model are the exploitation of the full, flight angle relationships as described in Chapter III 

and the relaxed requirement for coordinated turns, i.e., nonzero sideslip angle.  With this, 

the equivalent, analytical flight angle relationships are given by Eqs. (3.16) and (3.18) 

and repeated here  

 
[ ]
[ ]

 asin cos (sin sin cos( - )+cos sin( - ))-sin cos sin  

 acos (cos (cos cos( - ))+sin sin )/cos

β γ θ φ ξ ψ φ ξ ψ γ θ φ

α γ θ ξ ψ γ θ β

=

=
 (5.69) 
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which are again bounded by implementing the corresponding path constraints 

 
( )
( )

10 , 50

1.5 , 1.5

t

t

α

β

− ≤ ⋅⋅⋅ ≤

− ≤ ⋅⋅⋅ ≤
 (5.70) 

This time, the constraint on β is not omitted.  Similarly, an analytical expression for the 

bank angle is deduced from the flight angle DCM of Eq. (3.12), 

  
 [ ]=acos (cos cos cos +sin sin )/cosσ α θ φ α θ γ  (5.71) 
 
and constrained according to  
 80deg ( , ) 80degtσ− ≤ ⋅⋅⋅ ≤  (5.72) 
 

b. Results and Analysis 
The following results were generated by bootstrapping from 20 to 20 

nodes which takes approximately 335 sec.       

 

 
Figure 6.62 Max DR Elevon Controls. 
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Figure 6.63 Max DR Flap Controls. 

 
 

 
Figure 6.64 Max DR Rudder Controls. 
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Figure 6.65 Max DR Position Response. 

 
 

 
Figure 6.66 Max DR Velocity Response. 
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Figure 6.67 Max DR Body Rate Response (degrees). 

 

 
Figure 6.68 Max DR Body Rate Response (Radians). 
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Figure 6.69 Max DR Euler Angle Response. 

 
 

 
Figure 6.70 Max DR Aero Angle Response. 
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Figure 6.71 Max DR 2D Ground Track. 

 
 

 
Figure 6.72 Max DR 3D Flight Trajectory Profile. 
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Figure 6.73 Max DR Path Constraint Functions. 

 

 
Figure 6.74 Max DR Sink Rate Profile. 
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Figure 6.75 Max DR Axial Force History. 

 

 
Figure 6.76 Max DR Side Force History. 
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Figure 6.77 Max DR Normal Force History. 

 

 
Figure 6.78 Max DR Rolling Moment History. 
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Figure 6.79 Max DR Pitching Moment History. 

 

 
Figure 6.80 Max DR Yawing Moment History. 
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Figure 6.81 Max DR Hamiltonian Function. 

 
 

As expected, these results are very similar to those for Problem SS since 

the rolling/banking angles are relatively small throughout the trajectory.  Interestingly, 

Figure 6.70 indicates nonzero sideslip and bank angles at the end of the trajectory.  

Although this will typically reduce the downrange distance due to an increase in drag, 

this maneuver may be necessary to satisfy the endpoint conditions. The maximum 

downrange for this solution is 2.899 deg in longitude (~173.95 nm), as shown in Figure 

6.65, Figure 6.71, and Figure 6.72.          

The following plots show the results for a Max crossrange (CR) case. 
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Figure 6.82 Max CR Elevon Controls. 

 
 

 
Figure 6.83 Max CR Flap Controls. 
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Figure 6.84 Max CR Rudder Controls. 

 

 
Figure 6.85 Max CR Position Response. 
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Figure 6.86 Max CR Velocity Response. 

 

 
Figure 6.87 Max CR Body Rate Response (degrees). 
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Figure 6.88 Max CR Body Rate Response (Radians). 

 
 

 
Figure 6.89 Max CR Euler Angle Response. 
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Figure 6.90 Max CR Aero Angle Response. 

 
 

 
Figure 6.91 Max CR 2D Ground Track. 
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Figure 6.92 Max CR 3D Flight Trajectory Profile. 

 
 

 
Figure 6.93 Max CR Path Constraint Functions. 

 
 



318 

 
Figure 6.94 Max CR Sink Rate Profile. 

 

 
Figure 6.95 Max CR Axial Force History. 
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Figure 6.96 Max CR Side Force History. 

 

 
Figure 6.97 Max CR Normal Force History. 
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Figure 6.98 Max CR Rolling Moment History. 

 

 
Figure 6.99 Max CR Pitching Moment History. 
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Figure 6.100 Max CR Yawing Moment History. 

 

 
Figure 6.101 Max CR Hamiltonian Function. 
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The maximum crossrange for this solution is 1.425 deg in latitude (~ 85.5 

nm) as shown by Figure 6.85, Figure 6.91, and Figure 6.92.  As expected, Figure 6.89 

and Figure 6.90 show a large roll and bank angle maneuver for the first 100 sec or so, 

until the heading is approximately 90 deg when they “level out.”   Surprisingly, the 

sideslip angle also increases near the end of the trajectory.  A shown in Figure 6.90, the 

sideslip angle constraint is active from about 475 sec to 750 sec.  Again, this may be a 

result of the vehicle requiring energy management in order to satisfy the endpoint 

conditions.     

7. 6-DOF versus 3-DOF Solutions  
The following results compare the maximum downrange case for the 3-

DOF and the 6-DOF trajectory optimization solutions.  Since the 3-DOF model used in 

Chapter IV assumes zero sideslip, it is appropriate to compare Problem SS which also 

forces zero sideslip.    

 

 
Figure 6.102 3-DOF vs. 6-DOF Response (Position) for Max DR. 
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Figure 6.103 A Closer Look at 3-DOF vs. 6-DOF Altitude Profile. 

 
 

 
Figure 6.104 3-DOF vs. 6-DOF Response (Velocity) for Max DR. 
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Figure 6.105 3-DOF vs. 6-DOF AoA and Bank Angle for Max DR. 

 
 
 

 
Figure 6.106 3-DOF vs. 6-DOF 2D Ground Track for Max DR. 
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Figure 6.107 3-DOF vs. 6-DOF 3D Flight Trajectory for Max DR. 
 
 

 
Figure 6.108 3-DOF vs. 6-DOF Max DR Hamiltonian Function. 

 
 

Figure 6.102 appears to show very little difference between the 3-DOF and 6-DOF max 

DR cases; however, a closer look in Figure 6.103 and Figure 6.107 reveals a difference of 

11.7 % (3270 ft) in altitude at 600 sec and 4.5 % (7.8 nm) in downrange distance. 

Additional comparisons to the 3-DOF trajectory are shown for the other 6-DOF models 

in Table 6.1 to Table 6.4. 
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Table 6.1 6-DOF vs. 3-DOF for Approx. Angles, Nonzero Beta (Unconstrained) 
Case 1 Lon_f (nm) Lat_f (nm) Max Beta (deg) 

Max DR 173.760 0.170 6.00 
6-DOF 

Max CR 82.740 89.520 8.00 

Max DR 166.680 0.000 0.00 
3-DOF 

Max CR 88.860 71.880 0.00 

 
 

Table 6.2 6-DOF vs. 3-DOF for Approx. Angles, Zero Beta 
Case 2 Lon_f (nm) Lat_f (nm) Max Beta (deg) 

Max DR 174.480 0.187 0.00 
6-DOF 

Max CR 92.832 75.093 0.00 

Max DR 166.680 0.000 0.00 
3-DOF 

Max CR 88.860 71.880 0.00 

 
 

Table 6.3 6-DOF vs. 3-DOF for Exact Angles, Nonzero Beta (Constrained) 
Case 3 Lon_f (nm) Lat_f (nm) Max Beta (deg) 

Max DR 173.940 0.776 0.77 
6-DOF 

Max CR 79.980 85.500 1.50 

Max DR 166.680 0.000 0.00 
3-DOF 

Max CR 88.860 71.880 0.00 

 
 

Table 6.4 6-DOF vs. 3-DOF Range Errors 
  Case 1 Case 2 Case 3 

Max DR Error (%) 4.075 4.470 4.174 

Max CR Error (%) 19.705 4.279 15.930 
 
 

Overall, the three different downrange cases result in approximately the same 

performance with an average error of 4.24 %.  Note that the two cases that allowed 

nonzero sideslip resulted in a slightly smaller range.  The crossrange performance had a 

higher error with an average of 13.3 %.  The lowest error, indicated in Table 6.4, was for 

Case 2 that forced sideslip to be zero. 
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8. Feasibility Analysis 
Confirming the feasibility of the 6-DOF results presented some challenges not 

encountered with the 3-DOF models.  Unfortunately, the most suitable method for 

verifying the feasibility of the optimal control solution failed to work for the 6-DOF 

models that used the aerodynamic data (i.e., Problems SF, SS and MS).  Note that for a 

successful feasibility test, the propagated results should converge to the DIDO solution 

within some acceptable error tolerance.  As shown in the 3-DOF results, the only 

measurable errors were towards the end of the flight trajectory and were dependent on the 

accuracy of the solution (i.e., number of nodes).  For all of the 6-DOF results (except the 

homotopy models that did not use the aerodynamic data), using the optimal control 

solution to propagate the dynamics via ode45, the interpolated controls always caused the 

states to diverge from the DIDO solution as indicated in Figure 6.109.   

 

 
Figure 6.109 Example of 6-DOF Propagation Failure. 

 

In some cases, this divergence corresponded to a warning in MATLAB: 

Warning: Failure at t=xxxxx. Unable to meet integration tolerances 

without reducing the step size below the smallest values allowed at time t.   
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Note that this same exact phenomenon plagued Carter’s 6-DOF optimal combat 

maneuver work for his F-18 HARV and UCAV-X (possibly the X-45) models [195].  

Although he did not investigate the cause of the problem, his explanation was based on 

software compatibility issues between DIDO and its use of third party software, the 

TOMLAB/SOL (SNOPT) toolbox.  Using a previous version of TOMLAB/SOL, he had 

no problems with propagation for a similar Navion model.  Although there was no 

conclusive evidence of this explanation, it is a possibility.  Another more viable 

possibility may have to do with the type of interpolation and/or propagation being used.   

Assuming that the selected interpolation scheme (cubic) does not cause the 

problem, two common versions of the MATLAB Runge-Kutta propagator were used to 

propagate a “cubic” interpolated control history.  Those compared were the 4/5th-order 

“ode45” for non-stiff differential equations and the variable order, “ode15s” for stiff 

differential equations.  Figure 6.110 to Figure 6.113 compare the ode45 results using 

adaptive and fixed step size.  Note that ode15s gave approximately the same results as 

ode45; only sometimes did it propagate a little longer before diverging (not shown).  As 

illustrated, a fixed step size improves the propagation, but still indicates signs of 

divergence.   
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Figure 6.110 State Propagation using “ode45” (Position). 

 

 
Figure 6.111 State Propagation using “ode45” (Velocity). 
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Figure 6.112 State Propagation using “ode45” (Body Rates). 

 

 
Figure 6.113 State Propagation using “ode45” (Euler Angles). 
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Note that it was originally thought that the interpolation scheme had little affect 

on the propagation results, but as exposed by Lewis, who experienced a similar problem 

in his work involving optimal path planning for unmanned ground vehicles, the system 

response to the interpolated controls is very sensitive [178].  With this, it was prudent to 

take a second look at the way MATLAB interpolates the RLV controls of this problem 

using various MATLAB interpolation schemes (e.g., linear, spline, cubic).  A shown in 

Figure 6.114 to Figure 6.116, there are some variations in the interpolated controls, 

especially for the “spline” interpolant that has a tendency to overshoot.  Lewis also 

associated the sensitivity of the propagation errors to the number of nodes used to 

generate the optimal controls.  Obviously, the sensitivity of the interpolation and 

propagation methods is a concern, especially for closed-loop implementation that 

requires use of Runge-Kutta-type propagation; hence, this issue warrants future 

investigation.     
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Figure 6.114 Interpolated Elevon Controls using Various MATLAB Schemes. 
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Figure 6.115 Interpolated Flap Controls using Various MATLAB Schemes. 

 

 
 

 
Figure 6.116 Interpolated Rudder Controls using Various MATLAB Schemes. 
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This work does not intend to substantiate Carter’s claim about software 

compatibility, Lewis’ claim about sensitivities as a result of grid size, or further 

investigate propagation methods; however, due to the lack of positive results from the 

standard feasibility test, an alternate confirmation of feasibility is required. 

The most obvious approach is to verify that the control solution is physically 

realizable, i.e., realistic in the sense that the controls could be used to steer the vehicle.  

The requirement for this is primarily dependent on control rates since actuator operation 

is constrained within certain rate limits.  For the X-33 control surface deflection rates, the 

elevons and rudders are limited to 30 deg/s whereas the body flaps are limited to 20 

deg/s.  Reviewing the 6-DOF control solution it is obvious that the rates are small, but to 

confirm this, the approximate rates were calculated and plotted in Figure 6.117.  As 

shown, the rates are not even close the vehicle limits, but are all within +/- 1.0 deg/sec.      
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Figure 6.117 Example of Small Control Rates for 6-DOF Max DR Solution. 

 

Any issues with exceeding rate limits can potentially be avoided by using the 

alternate model formulation that employs pseudo-controls; hence, allowing direct 

constraints on the rate limits.  This also has the advantage of smoothing the control signal 

as given by the 3-DOF example in Chapter IV.   

Also, for independent verification, the 6-DOF high-fidelity (HiFi) optimal 

solution is compared to the results of the 3-DOF commanded, 6-DOF tracking 

simulation.  Since the inner-loop controller of the simulation generates 6-DOF control 

histories using piecewise linear programming (PLP) in the control allocator, it is 

conceivable that the controls will not be exact.  Additionally, the results generated in that 

example were based on a 3-DOF model using slightly different assumptions and 
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conditions.  For example, the 3-DOF model used to generate the optimal guidance 

commands was based on a flat-earth model.  Nonetheless, the trends of the control-time 

histories along with the generated forces and moments can provide a generalization of the 

solution feasibility.  As such, Figure 6.118 to Figure 6.126 show the controls and the 

corresponding forces and moments from the two different solutions.   

 

 
Figure 6.118 6-DOF HiFi Optimal vs. PLP Allocated Elevon Controls. 
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Figure 6.119 6-DOF HiFi Optimal vs. PLP Allocated Flap Controls. 

 
 
 

 
Figure 6.120 6-DOF HiFi Optimal vs. PLP Allocated Rudder Controls. 
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Figure 6.121 6-DOF HiFi Optimal vs. PLP Allocated Axial Force. 

 
 

 
Figure 6.122 6-DOF HiFi Optimal vs. PLP Allocated Side Force. 
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Figure 6.123 6-DOF HiFi Optimal vs. PLP Allocated Normal Force. 

 

 
Figure 6.124 6-DOF HiFi Optimal vs. PLP Allocated Rolling Moment. 
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Figure 6.125 6-DOF HiFi Optimal vs. PLP Allocated Pitching Moment. 

 
 

 
Figure 6.126 6-DOF HiFi Optimal vs. PLP Allocated Yawing Moment. 

 

Note that since the 6-DOF HiFi optimal controls and the PLP allocated controls 

are generated using different models at slightly different initial conditions, only 

generalizations can be made about the trends.  As seen in Figure 6.118, the trends for 

each of the elevon control histories are different in that the optimal deflections remain 

around 20 deg whereas the PLP allocated deflections remain around 0 deg and then 
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switch to about 5 deg at approximately 325 sec.  For a period of 325 to 500 sec, the 

optimal deflections drop to about 10 deg.  This may be indicative of a different 

equilibrium point for the elevons.  Figure 6.119 shows a very similar trend in flap control 

histories.  Despite the apparent shift, the negative flap deflection magnitudes are 

approximately the same.  An interesting result for the optimal deflections is that they 

gradually deflect downwards to their limits of around -15 deg whereas the PLP allocated 

flaps remain constant at about 10 deg.  This downward deflection implies a nose-down 

pitching moment; however, at the same time the elevons are counter-reacting this as 

indicated by their upward deflections.  According to the pitching moment history in 

Figure 6.125, the net effect is equivalent.  Another striking difference is the rudder 

control histories.  There is a large deflection for the optimal rudders; however, the right 

and left rudders appear to counter one another as indicated in Figure 6.120.  As for the 

forces and moments, they show relatively similar trends.  The largest difference occurs in 

the initial normal force.  As shown in Figure 6.123, the optimal force is substantially 

lower than the PLP allocated force.  This is likely related to the initial climb maneuver of 

the simulation trajectory as a consequence of a higher initial velocity.                

Perhaps a more qualitative way to confirm both feasibility and optimality is by 

applying Bellman’s Principle once again.  In this case, the idea is to string a series of 

Bellman segments together to reconstruct the optimal solution.   

9. Anti-Aliasing Bellman Segments 
Solving the RLV reentry problem has the underlying difficulty of optimizing 

controls subject to both slow translational and fast rotational dynamics.  This section 

applies the anti-aliasing bellman 2( )a B  algorithm described in Chapter II in an attempt to 

capture the high-frequency effects that the previous 6-DOF solution may have missed.  

This will also serve as yet another way to confirm both feasibility and optimality of the 

solution.  Note that this implementation is equivalent to the closed-loop method applied 

on the 3-DOF problem except that the clock-time is fixed.  At the time of this writing, the 

large computational time for the 6-DOF optimization problem precluded use of the PS-

feedback method.  A direct benefit of this method is that a high-node solution is not 

required up front.  Figure 6.127 to Figure 6.129 show the Bellman-sequenced control 
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histories with the resulting Bellman-sequenced position histories, Figure 6.130 and 

Figure 6.131. 

 
 

 
Figure 6.127 Bellman Sequenced Elevon Controls 
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Figure 6.128 Bellman Sequenced Flap Controls. 

 

 
Figure 6.129 Bellman Sequenced Rudder Controls. 
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Figure 6.130 Bellman Sequenced Altitude. 

 

 

 
Figure 6.131 Bellman Sequenced Trajectory (Position). 
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As shown, using the 2a B -algorithm appears to capture more of the high-

frequency effects from the rotational dynamics.  An interesting result here is the presence 

of extremely rapid oscillations during the first 100 seconds for the elevons and the flaps.  

This may be an indication of an un-trimmed initial condition.  Recall that this problem 

formulation specified the initial conditions.  An appealing test would be to let all of the 

state variables except position and altitude be free and see if the solution still has these 

oscillations in the beginning.  If not, then the computed optimal controls for the initial 

condition are likely the trimmed values.  

Since portions of the linearly interpolated Bellman segments are far from the 

DIDO nodes, this is an indication that even larger oscillation may exists that were not 

anti-aliased.  These Bellman sequenced control histories were generated using 20 

segments with each successive initial condition separated by two, four, or six nodes with 

a combined equivalence of 92 nodes.  To anti-alias the signal even more, a higher number 

of segments is required.  From the appearance of these high-frequency oscillations this 

problem warrants the use of the alternate problem formulation using pseudo-controls.  

This will help smooth the controls and allow constraints to be placed directly on the 

control rates.   

10. Footprint Generation  
The 6-DOF footprint generation used both Problems SS and MS.  Consistent with 

the 3-DOF footprint scenarios, the constraints on states, controls, paths and final endpoint 

conditions remained the same, but initial conditions were adjusted accordingly.     

Initial Conditions: 

 

 
0 0 0 0

0 0 0 0

0 0 0 0

h(t ) 167,323 ft V(t ) 8530 ft/s p( ) 0deg/s ( ) 0deg
(t ) -85 deg ( ) -1.5 deg q( ) 0deg/s ( ) 28.5 deg       
(t ) 26 deg ( ) 0 deg r( ) 0deg/s ( ) 0 deg

t t
t t t
t t t

φ
μ γ θ
λ ξ ψ

= = = =
= = = =
= = = =

(5.73) 

 

with the following initial and final guesses (linear interpolation between two points) 
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 (5.74) 
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 (5.75) 

 

The process of generating footprints for the 6-DOF Problems (SS and MS) 

presented some interesting results.  First, when using approximate flight angle 

relationships there are errors that cannot be ignored, especially for large-angle maneuvers 

involving large bank and roll angles such as the case in maximum crossrange trajectories.  

The maximum downrange solutions were as expected, but the maximum crossrange 

solutions revealed some important discrepancies.  As illustrated in Figure 6.132, for a 

maximum downrange case, there is negligible error between the approximate and exact 

flight angle relations.  On the other hand, for a maximum crossrange case, Figure 6.133 

shows substantial error between the two.  Additional variations of angles confirmed the 

commonly accepted “rule-of-thumb” that the approximate relations are only valid for  
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small angles on the order of 10 deg or less (see Figure 6.134).   The effects of this may 

not be apparent until trying to run crossrange simulations in which infeasible trajectories 

may result.   

 

 
Figure 6.132 Comparing Aero Angles for Max DR (DIDO Trajectory). 

 
 
 

 
Figure 6.133 Comparing Aero Angles for Max CR (DIDO Trajectory). 
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Figure 6.134 Comparing Aero Angles for Small Bank/Roll (< 10 Degrees). 

 
 

Forcing zero sideslip allowed feasible crossrange trajectories since this did not 

allow any errors to negatively affect the lateral-directional mode.  When using the exact 

angle relations and allowing nonzero sideslip angles in the problem formulation, even the 

maximum downrange case occasionally experienced unexpected results. As shown in 

Figure 6.135 and Figure 6.136, oscillations occur in the lateral-directional channels at 

approximately 307 seconds.  This sudden sideslip/yaw and bank causes the flight path to 

have a rather abrupt turn off of the nominal, expected path for a maximum downrange 

case.  Consequently, this maneuver degrades the downrange performance.  Surprisingly, 

it was found in the literature that in addition to sideslip angle being “the most sensitive 

state to overall vehicle performance” [32], there is also a critical entry condition for the 

X-33 that occurs at about M=3.16 at an altitude of approximately 97,167 ft (near TAEM) 

associated with a “critical, unstable lateral-directional point” [45].  A closer look at the 

DIDO solution revealed that this sudden maneuver corresponds to M=3.22~2.37 at an 

altitude of 109,687~98,090 ft.  After 307 sec, the sideslip angle continues to oscillate.  

The results also indicate active rudders during this time which could be a sign that they 
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are trying to compensate for the oscillatory behavior or this action may be contributing to 

the oscillations.  The concern is on rudder effectiveness during this time.  Recall, that 

rudders may not be effective until 2.5M ≤ and the onset of this “critical condition” starts 

at 3.20M ≈ ; therefore, the inclusion of this rudder effectiveness condition given by Eq. 

(5.49) may be required after all.       
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Figure 6.135 Example of Lateral-Directional Anomaly (States).  
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Figure 6.136 Example of Lateral-Directional Anomaly 

(Controls and Side Force).  
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Similar to the 3-DOF work, the 6-DOF model is used to generate polygonal 

footprint approximations indicating the maximum reachable set of feasible landing sites.  

Figure 6.137 shows footprints for the various 6-DOF cases compared to the 3-DOF 

footprint from Chapter IV.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.137 6-DOF Footprints vs. 3-DOF Footprint.  
 

As shown, the overall trend between each footprint is similar.  Comparing the 

extremal points shown in the inset plot “A” of Figure 6.137 indicates that the variance 

A 

B 

A B 
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between x-coordinates is 0.0482 and y-coordinates is 0.0061.  Comparing the extremal 

points shown in the inset plot “B” of Figure 6.137 indicates that the variance between x-

coordinates is 0.0001 and y-coordinates is 0.0040.  These variations are consistent with 

the previous 3-DOF versus 6-DOF differences on the order of 3 to 8 nm.  Interestingly, 

the points for the nonzero sideslip cases both indicate smaller minimum ranges.  This 

verifies the conjecture made about the possible performance degradation when forcing 

zero sideslip angles for low-speed flight.  In this case, the footprints indicate that a 

nonzero sideslip angle improves the minimum downrange performance of the RLV.   

11. Numerical Considerations 

a. Computational Speed 

Table 6.5 illustrates the effects that bootstrapping has on the CPU 

runtimes for Problem HF1.  Following the example of Carter, the percentages listed in the 

table are a measure of how much faster the runs were completed as a result of 

bootstrapping from the respective number of nodes [195].  For example, the complete 

runtime to bootstrap from 20 to 80 nodes takes 60.7 sec (8.5 sec + 52.2 sec), whereas 80 

nodes by itself takes 121.8 sec; therefore, 50% longer than the original combined 

bootstrapping time.  In other words, the effect of bootstrapping in this case saves 50% in 

computational time.   

 

Table 6.5 Effect of Bootstrapping on CPU Runtime (secs) for Problem HF1 
   Bootstrapped # of Nodes 

# Nodes 0 20 40 60 80 100 
6.2 11.8 30.5 51.6 59.3 14 4.2 

122% 66% 51% 46% 13% 
12.6 25.3 52.2 89.9 20 8.5   86% 50% 50% 20% 

26 51.8 76.6 40 24.4 X   75% 63% 20% 
45.5 60 67.5 X X   93% ? 

78.8 80 121.8 X X X   41% O
rig

in
al

 #
 o

f N
od

es
 

100 493 X X X X   

X = omitted – “never, never bootstrap to a lower node value” [195] 
? = not converged 
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Note that since Problem HF1 did not rely on the aero data, the CPU computation times 

were substantially faster.  For example, Problem SS and MS CPU runtimes ranged from 

300 to 1000 sec on average for 14 to 28 nodes.  Compared to the times in Table 6.5, 

Problem SS and MS run significantly slower.         

Computational speed is obviously a concern for the 6-DOF trajectory 

optimization, especially when using tabulated look-up data; however, this computation 

time can be reduced by at least a factor of 100 by optimizing the actual code, eliminating 

the Windows and MATLAB overhead etc. [151].  None of these computational 

enhancements were carried out because the purpose of the current work is to demonstrate 

the principles.  Since use of aerodynamic data tables involves linear interpolation 

between flight condition parameters (e.g.,, between Mach numbers), one possible way to 

reduce the computational speed when using the tables is to use constant gradients 

between the linear interpolating points.  This will reduce the number of gradient 

calculations; however, since the scope of this work required using DIDO software as a 

“black box,” alterations to the source code was not an option.     

b. Uniqueness of Solution 
Although having redundant control surfaces provides a margin of safety, 

particularly in a scenario requiring reconfigurable control, it also introduces ambiguity 

into the control optimization algorithm.  For the X-33, there are eight independently 

operated control surfaces.  As presented, the control system is overactuated such that 

multiple control surface settings have the overall same effect.  Although extensive 

research was not conducted in this area, one way to prevent this ambiguity in the controls 

is to define a secondary objective.  Modifying the cost function to include additional 

objectives should theoretically provide a unique solution.  Two suitable objectives that 

are simple to implement are that of minimum control effort and maximal preference 

allocation.   

If the overall minimum control effort is desired, the cost function can take 

the form of the quadratic-control term of a Linear Quadratic Regulator (LQR) optimal 

control problem [80] such that  



355 

 
0

1( ) ( ) ( )
2

ft
T

t

J t t dt⋅ = ∫ u Ru  (5.76) 

where R is a real-symmetric, positive-definite weighting matrix.  For the flight control 

problem of maximizing downrange (or crossrange), the cost function can be written as 
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where ir  are the non-negative weighting factors for each control (i=1..n).  Assuming that 

the actuation of each control surface is equally important, the R matrix can be unity (i.e., 

r is constant for all i ).  Note that for max/min-crossrange, the final longitude ( fμ ) in Eq. 

(5.77) is replaced by the final latitude ( fλ ).   

Another technique is to minimize control surface deflections by imposing 

a “maximal preference allocation” into the cost function [109].  This consists of 

specifying a “preferred” control surface position and often may be based on providing an 

extra margin of safety should the vehicle encounter an unexpected disturbance.  For the 

allocation problem, the quadratic cost term can be expressed as 

 * *

1

( ) ( ) ( )
n

T
i i i i

i

J δ δ δ δ
=

⋅ = − −∑  (5.78)  

where n is the number of controls and *δ is some “preferred” control setting.  Previous 

efforts have used a similar approach whereby a preference vector based on trim 

conditions is provided in the control allocation problem [41].  This may be acceptable for 

nominal maximum-range flights, but for problems involving maneuvering flight, this 

approach may limit the vehicle’s performance by restricting its operations to equilibrium 

glide characteristics.   

As a preliminary test case, the following cost function for the max-range case was 

implemented,  

 ( )
0

1 2
1

( ) ( ) ( )
ft n

L T U
f i i i i

it

J w w dtμ δ δ δ δ
=

⎛ ⎞
⋅ = − + − −⎜ ⎟

⎝ ⎠
∑∫  (5.79) 
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where 1w  and 2w  are the corresponding weighting factors, [0,1]w∈ , for the final 

downrange longitude and the maximal preference allocation, respectively.  Note that the 

preference for this test case is arbitrarily taken as the middle of the control surface 

deflection range as represented by the upper and lower limits, andU Lδ δ , respectively.   

Table 6.6 compares the cost and the range for various weighting-factors using the 6-DOF 

Problem SS.  Recall, this model consists of a spherical, rotating Earth, and assumes 

coordinated turns (zero sideslip) and the small flight-angle relation for AoA ( )α θ γ= − .  

As previously shown, this flight-angle relation is only valid for the max-downrange case 

where the bank and roll angles are relatively small.   

 
Table 6.6 Effects of Quadratic Cost - Bootstrapping from 20 to 20 Nodes 

1w  2w  Cost 1 Cost 2 
Total Cost, 

( )J ⋅  
Max DR 

(nm) 
CR 

 (nm) 
1.00 0.00 -0.05071 0.00000 -0.05071 174.311 0.0150 
0.90 0.10 -0.03657 0.01004 -0.02653 125.717 2.3096 
0.75 0.25 -0.03484 0.01830 -0.01654 119.776 2.2988 
0.50 0.50 -0.03419 0.03322 -0.00097 117.528 3.3079 
0.25 0.75 INFEAS INFEAS INFEAS INFEAS INFEAS 

 
 

c. Aerodynamic Model Sensitivities 
Numerous aerodynamic functional dependencies present the biggest 

problem.  A common approach for preliminary analysis is to use analytical expression to 

approximate the aerodynamic data.  This involves small perturbation theory to linearize 

stability and control derivatives about nominal operating points.  Depending on the 

vehicle, there may be certain sensitivities in the aerodynamic data.  As a pertinent 

example for this work, there appears to be an unstable lateral-directional point in the X-

33’s aerodynamic data that causes a critical flight condition at M=3.16 [45].  Although 

the root cause of this condition was not investigated in the raw data, preliminary results 

indicate the possibility.  

d. Non-Smooth Data 
By gradually increasing the nodes, starting with 12, it was determined that 

the solution failed to converge at 32 nodes and it didn’t make a difference if the run was 

bootstrapped with a converged solution or not.  The best solution in terms of 
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computational speed and accuracy was with bootstrapping from 14 to 28 nodes.  Using 

200 nodes failed to give any results at all after running nearly 8 hours.  The most likely 

cause of this behavior has to do with the non-smooth data and that by increasing the 

nodes, the gradients are shooting off (diverging) when it tries to capture the discontinuous 

regions.  This reason may also be related to the divergence experienced when trying to 

propagate the converged solution.  An interesting result was found when comparing a 

low-node solution to a higher bootstrapped solution.  The bootstrapped result (not shown) 

indicated signs of divergence towards the end of the run.  If the number of bootstrapped 

nodes was increased, then this divergence appeared sooner in the data.  Again, this 

confirms the conjecture of problems with handling the aerodynamic data.  

As previously described, the main trouble with using table look-up data is 

that the noise is amplified when computing the Jacobian.  One possible way to check this 

is to use finite differences to compute the Jacobian and analyze the matrix [196].  

Significant jumps in the data may predict that too many nodes will not work.   

This problem can be resolved by smoothing the original aerodynamic data.  

Most data from experimental testing contains some form of statistical noise.  The 

objective is to reduce this noise or to at least “discern and highlight patterns concealed in 

the data” [197].  According to Ref. [197], this is similar to regression analysis in 

statistics.  In flight vehicle applications involving the use of aerodynamic data, the data 

are often N-dimensional, where 2N ≥ .  When 3N > , it is nearly impossible to visualize 

this data.  Without a good tool, the process of fitting and/or smoothing large “multi-

dimensional data are, in general, theoretically challenging and computationally 

prohibitive” [197].  As such, only rudimentary aero-date fitting was conducted in this 

particular research effort as provided in Appendix A.  More on this is discussed in the 

“future work” chapter.  One possible improvement without having to smooth the data 

offline, is to implement an online low pass filter in DIDO.  

 

C. CONCLUDING REMARKS 
Although numerical errors associated with the aerodynamic data and possibly 

effects from over-actuated dynamics hindered a thourough evaluation of the proposed 6-
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DOF integrated G&C approach, valuable insight can be gained from the results.  As 

evident from some maximum performance comparisons, there are more substantial 

effects of using 3-DOF models verses 6-DOF models than originally anticipated.  The 

three main problems encountered in this study were the dependencies on the tabulated 

aero-database, the implicit control structure, and the high frequency dynamics. 

First, as previously explained and demonstrated, the use of tabular data in reentry 

trajectory optimization is problematic.  It is therefore highly recommended that data 

smoothing and/or more efficient curve-fitting techniques be employed in future work 

involving 6-DOF trajectory optimization.   

Second, since the 6-DOF equations for this problem attempted to use the full, 

nonlinear functional dependencies in the aerodynamic coefficients, the controls were not 

explicit in the formulations, rather they were embedded in the functions such as 

( , , , )C f Mα β δ= .  This limited the development of the necessary conditions of 

optimality, particularly the Hamiltonian Minimization Condition (HMC).  One way that 

the control variables can appear explicitly in the equations is by routine linearization 

techniques such that CC δ
δ

∂
=

∂
.       

Finally, with the sparsity of nodes in the DIDO solutions, it is apparent that some 

of the high-frequency dynamics are missed.  It is probable that high-frequency dynamics 

are causing the oscillations and divergence found when propagating the controls with an 

ODE solver using a small step size.  In this case, it may be necessary to model an inner-

loop control that should attenuate these modes.  As such, this falls under the purview of 

stability augmentation and warrants further investigation.       

Although non-favorable trajectories were generated for some 6-DOF cases using 

exact aero-angle relations, the combination of the HiFi model and an optimal control 

approach is apparently picking up inherent effects that are otherwise not encountered in 

3-DOF models.  Bottom line – the X-33 data is very sensitive and can serve as a prime 

candidate for future research into the coupling between dynamics, control, and 

optimization.  
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Since no prior investigation to this extent exists, this research provides valuable 

information and has highlighted various areas of concern for future efforts.  
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VII. CONCLUSION 

A. SUMMARY OF RESEARCH 
This research investigated the use of optimal control techniques for solving high-

fidelity, reentry trajectory optimization problems.  Recent advances in computational 

power and numerical methods make this method an attractive alternative for the guidance 

and control (G&C) systems of future reusable launch vehicles (RLV) that may require 

accurate, fast, and robust flight path planning, retargeting, and control reconfiguration.  

RLV G&C also requires the ability to reliably operate in the extremely dynamic and 

uncertain atmosphere.  Due to the nature of unpredictable weather and inherent 

aerodynamic uncertainty, the G&C method must be robust to exogenous disturbances 

(e.g.,, wind, density effects, etc.) and internal errors (e.g., noise, numerical error, etc.)  As 

such, the major robustness concern addressed in this research is the method’s ability to 

compensate for large wind gusts and uncertainty.    

While traditional approaches to reentry guidance and trajectory design assume 

that the primary concern is safely reaching the landing site at the correct attitude and 

energy, this research emphasizes that methods not based on high-fidelity models and 

optimality can jeopardize the safety of the vehicle.  Specifically, high-fidelity, optimal 

footprint generation is identified as a critical capability required to improve the reliability 

and effectiveness of RLVs that need to retarget alternate landing sites in the event of a 

contingency operation.  To improve the autonomous, onboard capability of satisfying the 

final approach requirements, a method was designed that can automatically generate 

landing constraints for any given runway geometry.  From a given runway’s location and 

geometry, a Final Approach Corridor (FAC) is generated and mapped to the optimal 

trajectory generation program that is assumed to reside in the RLV’s flight control system 

(FCS) onboard computer. 

Several initial conditions were used as test cases for investigating the 

effectiveness and reliability of the open-loop, PS-guidance method combined with the 

FAC-generation logic.  The Space Shuttle Landing Facility at Kennedy Space Center 

(KSC), Florida was chosen as the primary landing site for the various terminal guidance 
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scenarios.  In addition, numerous runways in Florida were selected and tested in a re-

targeting feasibility scenario.  Although these simulations did not provide quantitative 

results as would a full Monte-Carlo analysis, they did provide a “proof-of-concept” 

demonstration of the accuracy, autonomy, and reliability of the proposed method.  

Another aspect confirmed by these studies, is that the optimal trajectories often portray 

signs of intelligent behavior.  For example, one investigation aimed at yet another 

reliability test, revealed that the optimal trajectories tend to emulate the energy 

management designs of the Space Shuttle’s Terminal Area Energy Management (TAEM) 

and Approach-to-Landing phases.  This further illustrates the method’s viability for 

onboard, autonomous RLV applications.   

In this research, a PS-guidance method was extended to efficiently and effectively 

provide feedback control for managing large disturbances and uncertainties.   In addition 

to autonomous, open-loop range maximization, path planning, and footprint generation, 

this method was successfully implemented by successively re-solving the full open-loop 

optimal control problem in real-time.  Validating the supposition that real-time 

computation of open-loop optimal controls implies closed-loop control, this approach 

was effective for entry guidance in the presence of hurricane-force wind gusts.  The 

results revealed that this approach is capable of steering a vehicle through wind gusts of 

approximately 7.7 % the vehicle’s total airspeed.  In the specific test cases shown, this 

consists of a sustained wind gust magnitude of approximately 140 mph over a flight-time 

duration of 20 seconds.  Although the direction of the gust was constant and limited to a 

specific altitude range, it is representative of real wind-shear phenomenon.          

A major focus of this research was developing a 6-DOF “integrated” guidance 

and control architecture as a unified approach to decoupling inner and outer loop 

interactions that can potentially interfere with performance objectives.  This integrated 

approach involved using a single-loop structure in the control system that determines the 

optimal control surface deflections (or rates) directly as opposed to the conventional 

control allocation techniques.  Traditional methods depend on the use of separated and 

often complicated G&C architectures that requires substantial gain tuning/scheduling, 

linearization, tracking and disturbance rejection techniques, etc.  Posing the problem 

strictly into the optimal control problem formulation and consequently defining a 
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nonlinear programming problem, a PS-based optimization method is used to solve for the 

control variables while ensuring both feasibility and optimality of the solutions.  This 

approach eliminates many of the laborious techniques needed in the traditional methods.   

Primarily as a means of verifying the 6-DOF integrated G&C solutions, a 6-DOF 

simulation was developed that integrated an outer-loop, 3-DOF optimal trajectory 

generator and a body-rate command approximation with an inner-loop, reconfigurable 

tracking controller developed by AFLR.  After appropriately tuning the gains and 

modifying the command generation logic, the inner-loop controller successfully tracked 

the P,Q,R-body rates converted from an optimal 3-DOF trajectory.  Comparing trends of 

the resulting control histories, appropriate states, as well as calculated forces and 

moments, helped confirm the feasibility of the 6-DOF optimal trajectory solutions.     

Included in this 6-DOF work were examples of problems associated with using 

the standard 6-DOF equations of motion for trajectory optimization applications.  Using a 

homotopy path as a troubleshooting technique helped demonstrate the sensitivity of the 6-

DOF optimization problem to the uncertain aerodynamic database.   

In an attempt to capture the inherent high frequency effects due to fast rotational 

dynamics from the flight vehicle attitude equations, an anti-aliasing Bellman algorithm 

was applied.  This implementation verified that the low-node solution was in fact an alias 

of a higher accuracy solution.  But, more importantly, it revealed that the rates of the 

control surface deflections exceeded the practical limits of the vehicle; hence, requiring 

the use of a pseudo-control problem formulation in order to constrain the control rates.     

Finally, this research work concluded by comparing the 3-DOF and 6-DOF 

performance, specifically the maximum range trajectories and the approximate 

maneuverability envelopes based on a fixed initial condition corresponding to a flight 

over the Gulf of Mexico.  This comparison re-affirmed the claim that basing footprints on 

lower fidelity models is dangerous if implemented in a real vehicle or even if used for 

offline trajectory design and/or trajectory reshaping.  Although the differences were not 

as great as those found from others in previous studies, they were enough to make 

landing infeasible.  The average maximum differences between the 3-DOF (without trim 
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effects) model and the 6-DOF model were approximately 4.24 % (~8 nm) in downrange 

and 13.3 % (~14 nm) in crossrange.            

 

B. ORIGINAL CONTRIBUTIONS 
This research provided a new, unified approach for autonomous G&C of the 

highly constrained and nonlinear RLV reentry problem.  By applying optimal control 

theory, the reentry problem was solved by the DIDO/SNOPT sparse optimization 

software package.  Although the reentry problem itself is fundamentally the same, the 

approach is unique in that it avoids the common trajectory segmentation, trimmed flight, 

and reference trajectory tracking used throughout the field.  Rather, it solves the complete 

trajectory as one problem using the same formulation and algorithm.  With its real-time 

capability, new trajectories are generated throughout the flight eliminating the reliance on 

tracking a reference trajectory or scheduling/storing/executing pre-programmed 

maneuvers.   

By the nature of the optimal control formulation, there are no transfer functions to 

be designed or gains to be tuned.  Likewise, only the physically realistic constraints of the 

problem are modeled and as such do not put unnecessary limitations on the true physics 

of the system.  For example, it is common in reentry G&C to use trimmed flight 

constraints and zero sideslip constraints.   

Furthermore, it is important to stress that this approach is suitable for any flight 

vehicle requiring the use of the full 6-DOF equations of motion.  Though the focus on 

this research was the RLV reentry application, most of the formulation, code, FAC-target 

logic, and PS algorithm are equally valid for any flight vehicle including the automatic 

trajectory generation for commercial or general aviation aircraft.  In this respect, the 

approach offers a vehicle-independent solution to a plethora of flight problems.            

A second unique contribution of this research is the implementation of the PS-

feedback method to the RLV reentry problem.  Due to the anti-aliasing effect, it was 

determined that a relatively low degree of discretization (i.e., number of LGL-node 

points) is sufficient for closed-loop optimal guidance.  Thus, it is apparent that this 

technique is viable for use in optimal guidance algorithms that require corrective 
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maneuvers from the perturbed trajectory.  Perhaps more importantly, this feedback 

implementation contributed to the verification and validation of new theoretical 

developments in the field of pseudospectral-based optimal control.  The PS-feedback 

guidance verified the requirements of a sampling frequency for generating Carathéodory-

π solutions and illustrated the detrimental effects of using a less sophisticated feedback 

control such as the more common sample-and-hold techniques (e.g., ZOH). 

To date, there have been only two attempts to solve the highly representative, 6-

DOF flight equations of motion using direct trajectory optimization methods.  The first, 

to the best of the author’s knowledge, employed a similar PS-method to compute optimal 

combat flight maneuvers; however, this work implemented the standard EoM [195].  

Concurrently with the research presented herein, a two-timescale collocation method was 

employed for a class of RLV trajectory optimization problems [78],[79].  Although these 

efforts both solved 6-DOF problems, this work is unique because it not only extends the 

method to a feedback implementation, but that it also exemplifies the approach as a 

viable option for a new autonomous G&C architecture that can provide speed, guaranteed 

convergence, and robustness.    

The importance of this demonstrably successful application to the reentry problem 

is three fold.  First, it validates that PS methods can easily generate optimal reference 

trajectories for highly dynamical nonlinear aerospace problems.  Secondly, it shows 

promise for solving a rich variety of dynamical systems by breaking from the traditional 

concept of feedback control and paving the way towards a unified approach employing 

real-time optimal control.  Finally, with such powerful methods readily available and the 

expanding computational speed of computers, why settle for less than optimal?  As 

implied by the various examples in this dissertation, optimality not only provides savings 

in terms of time, cost, control, fuel, etc, but also improves safety, reliability, robustness, 

and autonomy as typically required of intelligent systems. 

 
 
 
 
 
 
 



366 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 



367 

VIII. OPEN ISSUES AND FUTURE WORK 

A. MODELING AND FIDELITY 
In terms of flight dynamics, a large portion of this work focused on deciphering 

various formulations that existed in textbooks, literature, and flight mechanics software.  

With this, most of the time was spent performing rudimentary analysis of the flight 

equations of motion and coordinate systems.  Emphasis was placed on understanding the 

various assumptions used in the derivations such that some of these assumptions could be 

removed when modeling the full 6-DOF equations.  For example, numerous 

contradictions, mostly as a result of different notation and assumptions, inspired further 

investigation into the flight angle relationships as summarized in Chapter III.  The intent 

was to use a more correct, complete equation formulation; however, a full derivation and 

methodical examination of the equations was not a purview of this work.  With this said, 

a more thorough investigation into the flight equations along with numerical testing is 

required to select the most appropriated equations suitable for a high fidelity optimization 

problem.  Similarly, the models used for the earth (shape and gravity) and its atmosphere 

were not modeled to their highest fidelity.  Although the higher-order terms are often 

negligible, it is possible that combined effects of various simplifying assumptions can 

have unexpected results.  Essentially, there is a sensitivity factor involved just as there is 

for the aerodynamic data that has inherently large uncertainties.  

 

B. DATA SMOOTHING AND MULTI-DIMENSIONAL DATA-FITTING 
The 6-DOF aerodynamic data used in this work is approximated via AFRL’s 

linear interpolation of the tabulated database.  As emphasized by Betts, the use of linear 

interpolation is “by far the single most catastrophic impediment to an efficient solution of 

the trajectory optimization problem” [64].  As such, this dissertation work initially 

involved the use of numerous curve-fitting and surface-fitting techniques and tools to 

better approximate the aerodynamic coefficients (see Appendix A).  Unfortunately, time 

precluded the validation and implementation of accurate curve-fits, and instead the 

original linear interpolation was employed.   
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As previously mentioned, experimental flight testing (e.g., wind tunnel testing) 

often contains numerous errors and uncertainties that manifest as non-smooth data.  In 

some cases, these uncertainties are not trivial.  For example, an X-33 aerodynamic 

uncertainty study modeled uncertainties as high as 80% [173].  This degree of uncertainty 

along with the inherent discontinuous nature of tabulated data helps explain some of the 

computational problems encountered in the 6-DOF trajectory optimization work when 

using the X-33 tabulated aerodynamic database.  Overall, the use of non-smooth data in 

optimization codes can present various problems.  Some of these problems, as mentioned 

throughout this dissertation and as pointed out by Shaffer’s work [46], include 

singularities in the gradients, long calculation times, and “near optimal” verses “locally 

optimal” solutions.  Because of this, accurate and robust multi-dimensional data fitting 

(e.g., 2D-curve or 3D-surface-fitting) techniques are needed.  As recommended by Betts, 

a viable method to smooth tabular data is a cubic B-spline or a minimum curvature spline 

to more accurately represent “qualitative aspects” of the data [115].  Note that MATLAB 

offers a spline toolbox that has a function for B-splines called “bspline” and a function 

for 3D data smoothing called “smooth3.”   Another promising technique for efficient 

smoothing of tabular data involves the use of Linear-Quartic Chamfer Splines [198].  

Note that Moerder gratefully provided the “LQspline” code, but unfortunately time 

precluded its use in this research work.  In any case, it is a worthwhile endeavor to use 

refined data and/or accurate and computationally tractable approximations for future high 

fidelity flight trajectory optimization.     

 

C. HIGH FREQUENCY DYNAMICS 
As discussed in Chapter VI results, one of the problems encountered from using 

non-smooth data was failure of DIDO to give reliable results when using a high number 

of nodes (n > 30).  It is common practice with discrete optimization software to increase 

the number of nodes (i.e., mesh refinement) in order to improve the accuracy of the 

results.  Obtaining this accuracy usually comes at the penalty of increased computational 

time since the scale of the problem increases as a function of the number of nodes.  For 

example, the scale of the problem is represented by the number of discrete optimization 

variables given by ( ) 1n x uN N N+ + , such that the 6-DOF model in this work for a 20-
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node case has 401 optimization variables.  For a problem that has intrinsically different 

dynamic timescales, such as most flight vehicles with their slow translational dynamics 

and fast rotational dynamics, increasing the number of nodes should capture the high-

frequency effects.  Since this problem was unable to successfully bootstrap to higher 

nodes, the anti-aliasing technique was instead implemented to recover the high-

frequencies in the control histories.  If data smoothing is not performed, it may be 

prudent to compare the anti-aliasing technique with other so called time-scale separation 

techniques.  One possible technique worth pursuing is a two-timescale discretization 

scheme that Desai developed for use with a collocation method [78].  His approach 

provides an avenue for reducing problem size while still maintaining a high accuracy 

solution.  Valuable insight may be gained by implementing a similar approach using the 

pseudospectral method employed in this research.  Regardless, additional research is 

needed to confirm the conjecture that non-smooth data causes the “high-node” problem.            

 

D. IMPROVEMENTS FOR COMPUTATIONAL SPEED 
Fast computational speed may be a critical requirement for most aerospace 

applications using optimal control techniques such as the PS method.  Since the runtime 

for the 6-DOF reentry problem is excessive for on-board, real-time applications, it is 

worth exploring run-time reduction methods.  As such, it is compulsory to make a few 

suggestions on areas that could help enhance performance.  The two elements hindering 

speed are the computer platform (hardware and software) and the un-optimized 

algorithms used in the DIDO and MATLAB software. 

1. Computer Platform 
Obviously the computer’s CPU directly influences the speed of numerical 

calculations.  Most of this work was performed on a Dell Optiplex GX260 with a 

Pentium 4 CPU, 3.06 GHz, and 1.05 GB RAM.  Although this CPU and memory is 

sufficient for computationally intensive algorithms, the Windows and server environment 

(2000, SP 4) required approximately 50 running processes that consumed nearly half of 

the memory resources and 100 % of the CPU performance while running MATLAB 

7.0.1.  Moon concluded that transferring the DIDO code from the Windows/Server 

environment into a dedicated LINUX machine and from the MATLAB software to C-
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code, can increase the speed by at least a factor of 100 [199].  As far as the  

DIDO code itself, there are numerous opportunities.  

2. Algorithms in DIDO Code 
Future improvements to the DIDO algorithm also have the potential of 

significantly reducing computational time.  Three general areas worth exploring are:   1.) 

algorithmic choices based on convexity/non-convexity, 2.) the use of analytical 

Jacobians, and 3.) warm start procedures.   

Additional features that would improve DIDO, but not necessarily effect runtime, 

are the following: 

1. Automatic scaling  

2. Automatic mesh refinement (i.e., bootstrapping) 

3. Automatic verification of satisfying necessary optimality conditions 

4. Automatic propagation for feasibility analysis 

5. Automatic Bellman optimality tests 

Also, DIDO code can be made to accommodate more flexible input files.  For example, 

when using the path function file, it is only setup to pass in certain data (e.g., “primal” 

array), which consequently may require the path file to reproduce computations that were 

performed elsewhere.  Such was the case in using the aerodynamic database.  The tables 

had to be interrogated not only once in the dynamics file, but also in the path file.  This 

unnecessary duplication of function evaluations can impact time.  Also, DIDO requires 

the first and last node guesses to coincide with the specified knot locations.  This is a 

limitation that may have a quick fix.   

 

E. LIST OF SPECIFIC TASKS FOR FUTURE WORK 
The following list contains some of the specific tasks, in random order, that can be 

performed as a direct continuation of the work presented in this dissertation. 

• Explore the use of various curve-fitting techniques 

• Smooth the aerodynamic data 
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• Develop accurate approximations to the aerodynamics using “explicit” control 

variables in equations of motion instead of “implicit” functional dependencies 

• Apply the approach to other RLV models (recommend X-38 since actual flight 

data exists) 

• Perform more analysis with nonzero sideslip angle (use exact flight equations) 

• Conduct various failure scenarios and compare to previous work 

• Improve scaling (consider Lagrange multipliers) 

• Use quaternion attitude representation instead of Euler angle states in equations of 

motion 

• Improve wind gust model and integrate into vehicle model dynamics 

• Perform more rigorous Monte-Carlo analysis for the 3-DOF feedback-

implementation (e.g., sustained winds, random winds, turbulence, etc.) 

• Integrate path constraints into the cost function to improve robustness of 

feedback-implementation 

• Perform stability and sensitivity analysis 

• Implement feedback into the 6-DOF problem 

• Implement terminal guidance logic (i.e., FAC) for 6-DOF problem 

Although this is not an exhaustive list, it reflects some of the more important issues 

identified in this dissertation.     

 

F. EXTENDED APPLICATIONS 
With minimum modifications, this research work can be extended to solving 

various other flight-based applications requiring trajectory optimization.  The following 

sections summarize some potential extended applications that could be pursued with 

additional follow-on efforts.   
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1. RLV Landing Footprint Generation and Retargeting 
As briefly demonstrated in this dissertation (see Chapter IV), real-time generation 

of maximum performance footprints is well within reach.  With the capability to quickly 

generate landing footprints, pareto-optimal fronts, a vehicle in distress can determine 

which landing sites are feasible.  With the addition of a voting algorithm or by simply 

comparing performance costs, the preferable site can be targeted.  This autonomous 

capability presents the best option (i.e., optimal) in the advent that the originally intended 

landing site is not reachable. 

 2. Planetary Reentry, Descent, and Landing 
Designing vehicles and their flight control methods to land on Mars is an active 

area of research, especially after the recent U.S. presidential initiative promoting a return 

to the moon and eventually trips to Mars.  Assuming the same equations of motion are 

applicable on other planets, the approach developed in this dissertation is readily 

extendable to other planetary missions, including Mars entry, descent, and pin-point 

landing.  As a unified, vehicle-independent method, the presented PS-based reentry G&C 

should only require minimal modifications for Mars missions.  In a “plug-and-play’ 

fashion, this may consist of only swapping the planet model, atmosphere model, 

aerodynamic model, and vehicle parameters.    

3. Launch Vehicle Ascent and Reusable Fly-Back Boosters 
Obviously this optimal G&C approach is not limited to reentry, but can also be 

applied to ascent applications including all launch vehicles and ballistic missiles.  For 

example, Rea has demonstrated the applicability of PS methods for launch vehicle ascent 

[123].  Going even further, the open-loop method has successfully solved a  multi-stage 

launch vehicle problem as well as the hybrid optimal control of a “two-agent” vehicle for 

mission planning applications [200].  Adding the PS-feedback capability demonstrated in 

this dissertation to be a viable approach for flight vehicles, these applications can now be 

advanced to the next level by providing real-time, closed-loop endo-atmospheric 

guidance and/or control.   

Similar to the reentry problem, the “fly-back” guidance for a reusable booster 

designed to land itself at a designated site can also use this approach.  As such, the  
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booster would be able to recompute an optimal trajectory in the case of some off-nominal 

flight condition.  How about migrating this to a more “every-day” application, such as 

commercial airliners?     

4. Contingency Path Planning and Landings for Commercial Airliners 
An interesting and possibly near-term application of the proposed approach 

involves providing commercial airliners a real-time, onboard contingency path planning 

option.  Consider a commercial airliner, or any fixed-wing airplane for that matter, flying 

into the vicinity of its final destination when it is determined that severe thunder storms 

preclude it from landing.  Typically, the pilot needs to coordinate with air traffic control 

(ATC) and determine a feasible alternate landing site.  In accordance with recommended 

Federal Aviation Administration (FAA) practices, any good pilot will already have an 

alternate landing site planned, but it is not uncommon to divert to unplanned airports, 

especially with unpredicted weather, system failures, etc.  With an onboard version of 

this optimal trajectory generation either embedded in the aircraft’s flight computer or on 

a separate handheld computer, the pilot could use the tool to generate a set of feasible 

landing sites in fractions of a second as well as an optimal candidate flight path that 

avoids the thunder storms.  The pilot could then choose to manually track a set of optimal 

waypoints provided by the computer or have the autopilot do so.  This can even go as far 

as optimally scheduling and de-conflicting en-route flights. 

5. Path Planning for UAVs and MAVs 
On a smaller scale, the method can be extended for use in UAV and MAV path 

planning.  With the military focusing on more unmanned, intelligent combat systems, the 

development of new vehicle G&C methods is essential.  For example, the Army’s Future 

Combat Systems (FCS) architecture is highly dependent on autonomous and semi-

autonomous vehicle capabilities [201] that includes onboard mission planning and 

execution.  Lewis demonstrated that the PS-based optimal control approach used in this 

work can also successfully solve various obstacle avoidance problems using ground 

vehicle models and a simplified UAV model [178].  Integrating the full 6-DOF flight 

equations, along with some other ideas presented in this dissertation, into his work can 

provide a very powerful capability.  

Overall, the possibilities are endless! 
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APPENDIX A - AERODYANMIC COEFFICIENT 
APPROXIMATIONS 

A. CHARACTERIZATION OF X-33 AERO DATA (AVERAGE CURVES)  
In order to get a very crude approximation of the functional dependency effects 

on the individual aerodynamic coefficieints, various average curves were generated.  The 

following sets of two-dimensional (2D) curves are separated into contributions from the 

control surface deflections and contributions from the base effects only, i.e., the nominal 

“clean-body” configuration with no control deflections.  Although angle-of-attack ( )α , 

sideslip angle ( )β , and Mach number (M) are variables that change throughout the flight 

regime, in order to simplify the multi-dimensional data tables, these variables were fixed 

to arbitrary constants based on the expected range of operations.  Note that at higher 

speeds, the vehicle is likely at higher α and lower β . 
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1. Contributions from Control Surface Deflections 

 
 
 
 

 
Figure A.1 Axial Force Coefficient vs. Control Surface Deflections. 
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Figure A.2 Pitching Moment Coefficient vs. Control Surface Deflections. 
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Figure A.3 Normal Force Coefficient vs. Control Surface Deflections. 
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Figure A.4 Rolling Moment Coefficient vs. Control Surface Deflections. 
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Figure A.5 Side Force Coefficient vs. Control Surface Deflections. 
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Figure A.6 Yawing Moment Coefficient vs. Control Surface Deflections. 
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Figure A.7 Longitudinal Coefficients vs. Rudder Deflections. 
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Figure A.8 Lateral-Directional Coefficients vs. Rudder Deflections. 
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Table A.1 Polynomial Curve Fits for Aero Force Coefficients 
Aerodynamic Coefficient: y=f(x)   

CA Norm Error 
REi y = 4.0025e-006*x^{2} - 3.2939e-005*x + 5.6058e-005 0.0012522 
REo y = 4.0025e-006*x^{2} - 3.2939e-005*x + 5.6058e-005 0.0012522 
LEi y = 3.8948e-006*x^{2} - 4.593e-005*x   + 1.9524e-006 0.0005670 
LEo y = 3.8948e-006*x^{2} - 4.593e-005*x   + 1.9524e-006 0.0005670 
RF y = 2.2536e-005*x^{2} + 0.00062504*x + 0.0011774 0.0167790 
LF y = 2.1133e-005*x^{2} + 0.00059166*x + 0.00057217 0.0172500 
RR y = 2.6593e-006*x^{2} -  2.5452e-005*x - 0.00085771 0.0045559 C

on
tr

ol
 S

ur
fa

ce
 

Po
si

tio
ns

 (x
) 

LR y = 1.6368e-006*x^{2} + 3.3976e-006*x - 0.00065776 0.0039314 
 

Aerodynamic Coefficient: y=f(x)   
CY Norm Error 

REi y = - 1.6727e-006*x^{2} - 0.00016304*x + 0.0003978 0.0023242 
REo y = - 1.6727e-006*x^{2} - 0.00016304*x + 0.0003978 0.0023242 
LEi y = 2.1443e-006*x^{2} +  0.00012305*x + 9.6197e-006 0.0006723 
LEo y = 2.1443e-006*x^{2} +  0.00012305*x + 9.6197e-006 0.0006723 
RF y = 3.8511e-006*x^{2} +  8.6248e-005*x - 0.00016625 0.0052527 
LF y = - 2.3242e-006*x^{2} + 2.2627e-005*x + 0.00078711 0.0102700 
RR y = - 1.0672e-006*x^{2} + 0.00018801*x -  0.00084201 0.0044227 C

on
tr

ol
 S

ur
fa

ce
 

Po
si

tio
ns

 (x
) 

LR y = 8.382e-007*x^{2} + 0.0002251*x + 0.001378 0.0115220 
 

Aerodynamic Coefficient: y=f(x)   
CN Norm Error 

REi y = 2.7395e-006*x^{2} + 0.00035235*x + 0.00037582 0.0049520 
REo y = 2.7395e-006*x^{2} + 0.00035235*x + 0.00037582 0.0049520 
LEi y = 9.2712e-007*x^{2} + 0.00036395*x + 1.8599e-006 0.0013861 
LEo y = 9.2712e-007*x^{2} + 0.00036395*x + 1.8599e-006 0.0013861 
RF y = 2.8028e-005*x^{2} + 0.001574*x + 0.00041808 0.0150860 
LF y = 2.6754e-005*x^{2} + 0.0014795*x + 0.00094174 0.0158860 
RR y = - 1.4511e-006*x^{2} - 2.3643e-005*x + 0.0004284 0.0068906 C

on
tr

ol
 S

ur
fa

ce
 

Po
si

tio
ns

 (x
) 

LR y = - 1.2584e-006*x^{2} + 9.5217e-005*x + 0.00070911 0.0032958 
 
 
 
 
 
 
 
 
 
 
 
 



385 

Table A.2 Polynomial Curve Fits for Aero Moment Coefficients 
Aerodynamic Coefficient: y=f(x)   

Cl Norm Error 
REi y = - 1.5896e-006*x^{2} - 0.00030589*x - 4.0881e-005 0.0019617 
REo y = - 1.5896e-006*x^{2} - 0.00030589*x - 4.0881e-005 0.0019617 
LEi y = 7.7506e-007*x^{2} +  0.000302*x - 0.00010903 0.0013473 
LEo y = 7.7506e-007*x^{2} + 0.000302*x - 0.00010903 0.0013473 
RF y = - 1.4337e-005*x^{2} - 0.00081152*x - 0.00012868 0.0150860 
LF y = 1.4325e-005*x^{2} + 0.0007999*x + 0.00048483 0.0089242 
RR y = 2.8219e-007*x^{2} + 9.3139e-005*x - 3.6642e-005 0.0015436 C

on
tr

ol
 S

ur
fa

ce
 

Po
si

tio
ns

 (x
) 

LR y = - 3.8597e-007*x^{2} + 0.00010282*x - 0.00016134 0.0032802 
 

Aerodynamic Coefficient: y=f(x)   
Cm Norm Error 

REi y = - 5.8299e-007*x^{2} - 0.00010072*x - 0.00017672 0.0009949 
REo y = - 5.8299e-007*x^{2} - 0.00010072*x - 0.00017672 0.0009949 
LEi y = - 2.6121e-007*x^{2} - 0.00010383*x - 4.2181e-005 0.0002748 
LEo y = - 2.6121e-007*x^{2} - 0.00010383*x - 4.2181e-005 0.0002748 
RF y = - 1.0538e-005*x^{2} - 0.00052302*x - 0.00036032 0.0040355 
LF y = - 1.0295e-005*x^{2} - 0.00050748*x - 0.00036886 0.0037943 
RR y = 6.7472e-007*x^{2} + 4.0132e-006*x - 2.7661e-005 0.0018112 C

on
tr

ol
 S

ur
fa

ce
 

Po
si

tio
ns

 (x
) 

LR y = 8.4018e-007*x^{2} - 9.0623e-006*x + 3.279e-005 0.0007375 
 

Aerodynamic Coefficient: y=f(x)   
Cn Norm Error 

REi y = 3.6656e-006*x^{2} + 4.7162e-005*x - 2.3198e-005 0.0005359 
REo y = 3.6656e-006*x^{2} + 4.7162e-005*x - 2.3198e-005 0.0005359 
LEi y = - 3.9587e-006*x^{2} - 3.376e-005*x - 0.00040244 0.0019552 
LEo y = - 3.9587e-006*x^{2} - 3.376e-005*x - 0.00040244 0.0019552 
RF y = 9.9348e-006*x^{2} + 0.00027436*x + 0.000368 0.0078677 
LF y = - 9.7579e-006*x^{2} - 0.00028749*x - 0.00070484 0.0061287 
RR y = 9.8117e-007*x^{2} - 0.00010827*x - 1.0871e-005 0.0004818 C

on
tr

ol
 S

ur
fa

ce
 

Po
si

tio
ns

 (x
) 

LR y = - 6.2845e-007*x^{2} - 0.00011779*x - 0.00052043 0.0032878 
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2. Contributions from Base Effects Only – Nominal “Clean-Body” 
Configuration 
 

 

 
Figure A.9 Base Coefficients vs. Alpha and Beta. 

 
 
 

Table A.3 Curve Fits for Base Aero Coefficients 
 Aerodynamic Coefficient: y=f(x) Norm Error 

CA y = 8.6459e-006*x^{2} - 0.00096188*x + 0.13843 0.0122700 
Cm y = - 1.0107e-005*x^{2} + 0.00059259*x + 0.010142 0.0177650 α 
CN y = - 0.0002107*x^{2} + 0.030784*x - 0.01851 0.3942300 
Cl y = - 5.4905e-005*x - 1.7694e-020 0.0007385 
CY y = - 0.013165*x - 3.6237e-018 0.0034410 Fu

nc
tio

na
l 

D
ep

en
de

nc
ie

s 

β 
Cn y = - 0.0019305*x - 6.0395e-019 0.0007935 
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3. Contributions from Damping Derivatives 

 

 
Figure A.10 Damping Derivative Coefficients vs. Alpha. 

 
 

Table A.4 Curve Fits for Damping Derivative Aero Coefficients 
 Damping Derivatives: y=f(x) Norm Error 

CNq y = - 8.4979e-005*x^{2} + 0.0051351*x - 0.19193 0.266430 
Cmq y = 7.2108e-005*x^{2} - 0.0091332*x - 0.23968 0.318500 
Clp y = - 1.2446e-005*x^{2} - 0.00031204*x - 0.75563 0.107440 
Clr y = - 0.00064472*x^{2} + 0.050787*x + 0.15032 0.789490 
CYp y = 9.3034e-008*x^{2} + 0.00041547*x - 0.15098 0.022320 
CYr y = - 4.3145e-005*x^{2} + 0.0039895*x + 0.28568 0.063453 
Cnp y = - 2.2604e-005*x^{2} + 0.0010361*x - 0.058175 0.245790 

Fu
nc

tio
na

l 
D

ep
en

de
nc

ie
s 

α 

Cnr y = - 0.00017095*x^{2} + 0.010418*x - 0.56246 0.337600 
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B. A LEAST “SUM-OF-SQUARES” ERROR APPROXIMATION 
Another method used to approximate the aerodynamic coefficients was an 

algorithm adapted from Keshmiri’s “FITTER” code that generates polynomial fits to 

flight vehicle data based on minimizing a sum-of-square error, a traditional approach 

[202]-[204].  The routine essentially finds the best fitting equation (out of ten predictions) 

for any input aerodynamic matrix in the form of [ , , ]Mα δ .  By  measuring the deviation 

of the fitted values from the actual data, the algorithm picks the best possible fit based on 

the performance of the sum-of-square error.  Due to the drastically different behavior of 

the data for hypersonic verses supersonic or subsonic speeds, it is numerically better to fir 

the data separately.  Although it is probably more effective to separate into the three 

categories mentioned, for this testing the data was only separated into two sets: 

hypersonic ( 5)M ≥  and any speed less ( 5)M < .  Since the ……… , this method proved 

very time consuming and after running some tests using actual flight data inputs did not 

seem consisten with the accuracy measurements used to select the best-fit equations.  

Some fits tended to have substantially higher errors than others.  As such, an alternate 

method was sought to complement the coeeficients with higher errors.  For example, an 

online curve/surface-fitting program called ZunZun© was used as well [205].     

 

C. SURFACE-FITTING MULTI-DIMENSIONAL TABULATED DATA 
To help compensate for some of the visual inadequacies associated with the 

previous two aerodynamic approximation methods, two more tools were explored.  First, 

an on-line tool called ZunZun [205] was used to fit three-dimensional (3D) tabulated aero 

data.  This very simple yet powerful tool has the capability to plot, analyze, and fit data.  

The user only needs to enter the 2D or 3D data in the appropriate format and can then 

select what actions to take including options from a statistical toolbox.  Including the 

same fitting-criterion as the FITTER algorithm previously mentioned, this tool offers the 

benfit of visually verifiying the results.  For example, the following results were 

generated by inputting the aerodynamic table data for coefficieint of lift ( )LC  for a Mach 

range of 0 to 4.8.  Using the lowest sum-of-squared error, the results were as follows:  
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Data Statistics 
                   X                Y                  Z      

  Minimum:         -1.000000E+01      3.000000E-01     -2.369700E-01  
  Maximum:          5.000000E+01      4.800000E+00      8.711100E-01  
  Mean:             2.000000E+01      2.550000E+00      3.641397E-01  
  Median:           2.000000E+01      2.550000E+00      4.672600E-01  
  Sample Variance:  3.100000E+02      2.062500E+00      9.852651E-02  
  Sample Std Dev:   1.760682E+01      1.436141E+00      3.138893E-01  
  Pop. Variance:    3.105090E+02      2.065887E+00      9.868830E-02  
  Pop. Std Dev:     1.762127E+01      1.437319E+00      3.141469E-01  
  Variation:        8.803408E-01      5.631924E-01      8.620024E-01  
  Skew:             0.000000E+00      5.745097E-14     -4.767033E-01  
  Kurtosis:        -1.200645E+00     -1.224242E+00     -1.084190E+00  

 
5th Order Polynominal: 
z = a + bx0y1 + cx0y2 + dx0y3 + ex0y4 + fx0y5 + gx1y0 + hx1y1 + ix1y2 + jx1y3 + kx1y4 + lx1y5 + mx2y0 + nx2y1 
+ ox2y2 + px2y3 + qx2y4 + rx2y5 + sx3y0 + tx3y1 + ux3y2 + vx3y3 + wx3y4 + xx3y5 + yx4y0 + zx4y1 + Ax4y2 + 
Bx4y3 + Cx4y4 + Dx4y5 + Ex5y0 + Fx5y1 + Gx5y2 + Hx5y3 + Ix5y4 + Jx5y5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Error Statistics  
                   Absolute Error     Relative Error 
  Minimum:         -1.160733E-01     -5.790913E+00  
  Maximum:          1.056640E-01      3.734828E+00  
  Mean:            -1.967930E-07     -1.765218E-02  
  Median:           2.337568E-04      3.669358E-03  
  Sample Variance:  1.207538E-03      1.321617E-01  
  Sample Std Dev:   3.474965E-02      3.635405E-01  
  Pop. Variance:    1.209521E-03      1.323787E-01  
  Pop. Std Dev:     3.477817E-02      3.638389E-01  
  Variation:       -1.765797E+05     -2.059465E+01  
  Skew:             2.480964E-01     -5.566786E+00  
  Kurtosis:         1.757675E+00      1.280627E+02 
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Similar to ZunZun, another commercially available 3D surface-fitting tool is 

TableCurve3D© [206].  It provides slightly more advanced capabilities including the 

ability to automatically generate code in various programming languages.  Figure A.11 is 

an example of a TableCurve3D surface-fit for the X-33 drag coefficient data. 
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Figure A.11 Example of TableCurve3D Surface-Fit to Drag Coefficient. 
 

Also available is various statistical tools including visual representation of the 

error residuals as shown by Figure A.12. 
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Figure A.12 Example of TableCurve3D Error Residuals. 
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Rank 1  Eqn 539  Cosine Series Bivariate Order 10 
 
r2 Coef Det     DF Adj r2       Fit Std Err     F-value 
0.9989751507    0.9989566395    0.0068832354    54811.124645 
 
 Parm   Value         Std Error     t-value       95.00% Confidence Limits   P>|t| 
  a    0.405276446   0.000115175   3518.780405   0.405050632   0.40550226    0.00000 
  b    -0.28437301   0.000161324   -1762.74958   -0.28468931   -0.28405672   0.00000 
  c    0.021442695   0.000162891   131.6380453   0.021123328   0.021762062   0.00000 
  d    0.053621811   0.00016111    332.8274476   0.053305937   0.053937685   0.00000 
  e    -0.01219486   0.000227824   -53.5276053   -0.01264154   -0.01174819   0.00000 
  f    -0.05113431   0.000164881   -310.129234   -0.05145758   -0.05081104   0.00000 
  g    0.019450103   0.000160699   121.0346038   0.019135035   0.019765171   0.00000 
  h    -0.02222281   0.000226617   -98.0633405   -0.02266711   -0.0217785    0.00000 

Etc… 
 

X at Fn Zmin    Y at Fn Zmin    Fn Zmin 
-1.62842093     0.4151426864    0.0976251652 
X at Fn Zmax    Y at Fn Zmax    Fn Zmax 
50              2.2082302069    0.8595816875 
 
Procedure                    
GaussElim                    
r2 Coef Det     DF Adj r2       Fit Std Err 
0.9989751507    0.9989566395    0.0068832354 
Source    Sum of Squares     DF       Mean Square         F Statistic       P>F 
Regr      168.79801          65       2.5968924           54811.1           0.00000 
Error     0.17316999         3655     4.737893e-05    
Total     168.97118          3720 
 
Description: CD Aero Data (M=0-5) 
 
X Variable: Alpha (deg) 
      Xmin:  -10               Xmax:  50              Xrange:  60           
     Xmean:  20                Xstd:  17.60918321  
 
Y Variable: Mach 
      Ymin:  0                 Ymax:  5               Yrange:  5            
     Ymean:  2.4124590164      Ystd:  1.4490503008 
 
Z Variable: CD 
      Zmin:  0.095326542       Zmax:  0.87741056      Zrange:  0.782084018  
     Zmean:  0.41003383        Zstd:  0.2131252214 
 
Date            Time            File Source 
Oct 26, 2005    2:02:01 PM      h:\nps files\h drive files\phd research 
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APPENDIX B - MODEL FIDELITY CHARTS 

The following charts complement the discussions throughout this dissertation 

involving model and method fidelity/complexity and a homotopy path to modeling.  

Figure D.1 shows a conceptual evolution of the GNC architecture based on the model and 

the methods.  Moving from left to right in the architecture, models are improving fidelity 

and methods are becoming more “general.”    

 

 

 
 

Figure D.1 GNC Approach Evolution Architecture 

 

 

Table D.1 shows a candidate process for sequentially increasing model fidelity 

from a 2-DOF to a 6-DOF launch vehicle model.   
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Table D.1 Homotopy Path to High-Fidelity 6-DOF Model 
Model 1 Model 2 Model 3 Model 4 

point mass / (2-DOF) point mass / (3-DOF) point mass (4-DOF) rigid body (6-DOF) 
flat earth flat earth flat earth flat earth 
constant gravity constant gravity constant gravity variable gravity 
constant density exponential density exponential density density table (atmos66)??? 
no heat constraint no heat constraint approx. heat constraint heat constraint 
no control limits control limits control limits control limits 
no g-load constraint (normal) no g-load constraint (normal) g-load constraint (normal) g-load constraint (normal) 
no q-load constraint (axial) no q-load constraint (axial) q-load constraint (axial) q-load constraint (axial) 
no side-force constraint no side-force constraint no side-force constraint side-force constraint 
Cl & Cd (alpha) closed-form Cl & Cd (alpha) closed-form Cl & Cd (alpha, M) -surface fit Cl & Cd (alpha, M) -table??? 
pure longitudinal motion longitudinal & lateral motion longitudinal & lateral motion long/latl/direct/rotational motion
no disturbances no disturbances no disturbances no disturbances 
no uncertainties no uncertainties no uncertainties no uncertainties 
open loop open loop open loop open loop 
    

Model 5 Model 6 Model 7  
rigid body (6-DOF) rigid body (6-DOF) rigid body (6-DOF)  
spherical/non-rotating spherical/rotating oblate spheroid/rotating  
variable gravity variable gravity variable gravity  
density table (atmos66)??? other??? other???  
heat constraint heat constraint heat constraint  
control limits control limits control limits  
g-load constraint (normal) g-load constraint (normal) g-load constraint (normal)  
q-load constraint (axial) q-load constraint (axial) q-load constraint (axial)  
side-force constraint side-force constraint side-force constraint  
Cl & Cd (alpha, M) -table?? other??? other???  
long/latl/direct/rotational motion long/latl/direct/rotational motion long/latl/direct/rotational motion  
no disturbances disturbances (wind model) disturbances (wind model)  
no uncertainties uncertainties??? model uncertainties & sensor noise  
closed loop??? closed loop??? closed loop  
    

= changed from previous model   
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